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Abstract
Synthetic controls are widely used to estimate the causal effect of a treatment. However, they do not account

for the different speeds at which units respond to changes. Reactions may be inelastic or “sticky” and thus

slower due to varying regulatory, institutional, or political environments. We show that these different

reaction speeds can lead to biased estimates of causal effects. We therefore introduce a dynamic synthetic

control approach that accommodates varying speeds in time series, resulting in improved synthetic control

estimates. We apply our method to re-estimate the effects of terrorism on income (Abadie and Gardeazabal

2003), tobacco laws on consumption (Abadie, Diamond, and Hainmueller 2010), and German reunification

on GDP (Abadie, Diamond, and Hainmueller 2015). We also assess the method’s performance using

Monte-Carlo simulations. We find that it reduces errors in the estimates of true treatment effects by up

to 70% compared to traditional synthetic controls, improving our ability to make robust inferences. An

open-source R package, dsc, is made available for easy implementation.
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1. Introduction

Social scientists often seek to estimate the causal effects of treatments, such as events or interventions,

on various outcomes of interest. Researchers may, for example, investigate the consequences of

introducing minimum wage legislation on unemployment, the influence of terrorist attacks on

economic growth, or the effect of electoral redistricting on legislative behavior. Typically, making



2 Jian Cao et al.

such causal inferences requires the construction of counterfactuals to infer what would have occurred

in the absence of the treatment.

An important tool for constructing counterfactuals is the synthetic control method, “arguably

the most important innovation in the policy evaluation literature in the last 15 years” (Athey and

Imbens 2017). This method is designed to provide an accurate representation of the hypothetical

outcome for the treated unit without the treatment. It involves combining non-treated units, which,

when given appropriate weights, closely resemble the pre-treatment unit. This technique extends

the difference-in-difference approach, with the advantage of generating a close match to the unit of

interest, even when no single control unit would be appropriate on its own.

However, the synthetic control approach does not account for the potentially different speeds

at which units react and adapt to changes. Changes in reactions to an event or a policy may be

inelastic or “sticky” and therefore take longer in one unit than in another. Consider the example

of public opinion shifts following major policy changes. While some segments of the public may

quickly adjust their views in response to new information or policy announcements, showing a “fast”

response, while others might take longer to process the new information or for the effects of the

policy change to become apparent in their daily lives. More generally, the speed at which yt moves

reflects how quickly it mirrors changes in its underlying latent process zt. This speed of reaction

to changes may also vary within one unit over time: a previously slow unit may now be fast, and

vice-versa. In addition, speed may also vary as a function of covariates.1

Variations in speed—how quickly units react to changes—have important consequences for our

ability to make inferences. We may, for example, conclude that a treatment had a large effect on

treated unit y1 compared to untreated units y2 and y3. However, the observed difference in reaction

may simply be due to the fact that y2 and y3 lag behind y1—there is in fact no treatment effect, and

all we observe is y1’s reaction to common shocks (not the treatment) ahead of y2 and y3. Conversely,

we may underestimate the effect on y1 if y2 reacts faster to these common shocks. Ignoring these

differences in speed creates further problems for synthetic controls, as the donor2 and the treated

units may be out of synchronization, and what appears to be a good pre-treatment match may in

fact be due to chance rather than a true alignment. Another problem is that the varying speeds may

1. This concept of speed, detailed in Appendix 1, is quantified here through the presence and order of non-zero lag
coefficients. A higher order of significant lag coefficients, for example, indicates a slower response rate of the outcome variable
to changes in the latent process.

2. In synthetic control, the untreated units are referred to as donors.
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prevent us from finding a suitable synthetic control at all, as there may be no linear combination of

the donors that allows for a close match to the treated unit.

Different units—states, cities, people—may adjust and react at varying speeds for many reasons.

For instance, legal constraints in one state may slow down the speed at which economic decisions

are made compared to other states. Öztekin and Flannery (2012), for example, find that the speed

with which firms adjust their capital structure correlates with legal and financial norms. Additionally,

the speed of convergence—the rate at which a country’s per capita income approaches its steady

state—has also been shown to vary by country and over time (Rappaport 2000; Barro et al. 1991;

Canarella, Pollard, et al. 2004). Similarly, the effect of a policy may be slower to fully manifest itself

in one instance than in another. Thus, Alesina, Cohen, and Roubini (1992) find that the speed at

which the deficit is adjusted in election years may be slower than in other years. Moreover, the

impact of a shock on e.g. commodity prices, may be almost instantaneous in some markets but drag

on in others.

To demonstrate the significance of these varying speeds for our ability to make inferences, suppose

that we aim to estimate the causal effect of a policy on an outcome, e.g., the impact of cigarette taxes

on consumption or the introduction of a minimum wage on employment. We have artificial data for

three units (e.g., states) over time, as illustrated in Figure 1. During the observation period, one of

the units (y1) receives a treatment, while the other two (y2 and y3) do not, allowing them to be used

as potential donor units for counterfactual analysis. However, the researcher is not aware that the

true effect of the treatment is zero.3 In addition to the treatment, which applies exclusively to y1, we

also assume that all three units are subject to universal shocks represented by z. All units react to z at

different speed. As shown in 1, y2 adjusts slowly when y decreases but recovers fast. In contrast, y3

decreases fast but recovers slowly. Unit y1 has a neutral speed.

To generate the synthetic unit, the standard synthetic control approach constructs a weighted

average of the two available donor units y2 and y3 using weights w∗ = (w∗y2
,w∗y3

). w∗ is selected

such that the resulting synthetic control, which combines the non-treated units Y–1 as Y–1w
∗,

closely matches the pre-treatment sequence of the treated unit y1.4 Abadie and Gardeazabal (2003)

demonstrate that this approach produces a plausible counterfactual for the treated unit.

3. This illustration is simplified and purposefully designed to emphasize the critical role and impact of response speed
variability in synthetic control accuracy. More realistic examples follow below.

4. In other words, we choose w∗ to satisfy w∗ = argminw∗ ||y1 –Y–1w
∗ ||2. For simplicity, we abstract away any predictors.
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Figure 1. The challenge of varying speeds. Consider a researcher aiming to quantify the effect of a treatment on unit y1.
Unbeknownst to them, no treatment effect actually exists. Employing conventional Synthetic Control (SC) methods with
donor units y2 (slow) and y3 (fast), they obtain a post-treatment estimate (blue curve) that diverges markedly from the
true outcome (black curve), leading to a significant bias in the estimated treatment effect. In contrast, Dynamic Synthetic
Controls (DSC), as elaborated below, produce a synthetic control (red curve) that more closely approximates the truth.

In the example of Figure 1, however, selecting weights that generate a suitable counterfactual

is not straightforward. Indeed, even in this simple case, there is no easily obtainable closed-form

solution for finding w. The standard linear approach results in the synthetic control depicted by

the blue curve. This curve poorly matches both the pre- and post-treatment unit y1, and leads us

to erroneously conclude that a treatment effect exists (the post-treatment difference between the

blue and black curves) when, in reality, the true treatment effect is zero. Adding nonlinear terms or

lags does not improve the situation much either (see Figure A1 in Appendix 2, which incorporates

multiple lags and polynomial terms).

The approach’s challenge to generate a satisfactory approximation of the treated unit using

untreated units stems from the challenge of accounting for varying speeds. In this case, y2, y3, and

y1 all exhibit cycles that unfold at different rates. All three units display the same patterns, but prior

to the treatment, y2’s cycle is longer (i.e., slower) than y1’s, and y3 is faster than y1. Additionally, the

differences in speed fluctuate within each unit over time, so that a single speed adjustment parameter

is insufficient. Lastly, variations in speed might depend on unobservable variables or endogenous

regressors. Unless we can correctly account for the complex mechanisms and model the speed, the



Cambridge Medium 5

speed difference will cause errors akin to omitted variable bias in synthetic control estimation.5

In this paper, we introduce a new method, Dynamic Synthetic Controls (DSC), which accounts

for varying speeds within and across units. This approach operates by learning the differences in

speed between the series during the pre-treatment period. We do this by calculating a Dynamic Time

Warping (DTW) path between them. The warping path subsequently provides a measure of speed

differentials across units and over time. We then use this warping path to warp the post-treatment

donor units to align their speed with that of the treated unit. As a result, we can assess the treatment

effect while controlling for the inherent varying speeds. As an illustration of the method’s capabilities,

the red curve in Figure 1 shows the outcome of applying DSC to this simple case. We observe

that warping enables us to more closely match the post-treatment unit compared to a standard

synthetic control. Importantly, the estimator only removes speed differences that originate from the

pre-treatment period; it does not remove speed differences that are caused by the treatment. This, in

turn, allows for a more precise inference of the treatment effect’s magnitude.

The remainder of this paper demonstrates that this result extends beyond a simple example. In

fact, we show empirically that Dynamic Synthetic Controls serve as a more efficient estimator of

the treatment effect compared to standard synthetic controls. We substantiate these findings by

replicating leading empirical work in this field and illustrating how the results can be improved

using Dynamic Synthetic Control. Additionally, we generalize our results through a Monte-Carlo

simulation.

2. Synthetic Controls and the Problem of Speed

Many of the questions of interest to social scientists revolve around estimating the effect of treatments

such as an event or an intervention (e.g., Card and Krueger 2000; Chattopadhyay and Duflo 2004;

Di Tella and Schargrodsky 2004; Brady and McNulty 2011; Becker and Klößner 2016). Difference-

in-differences, for example, leverages similarities between a treated unit and an untreated one to

deduce the treatment’s effect. However, the method potentially suffers from biased control selection

and imprecise case similarity—sometimes lacking a suitable comparison altogether.

The synthetic control approach, pioneered by Abadie and Gardeazabal (2003) and refined in

Abadie, Diamond, and Hainmueller (2010, 2015), aims to address such limitations by combining a

5. The nature of the omitted variable bias will be discussed in Section 2.
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basket of control cases to mimic the pre-treatment scenario for the treated unit. This enables a more

robust counterfactual study of the treatment’s impact (see (Abadie 2021) for a review. A refresher of

the method is in Appendix 3).

However, in a wide class of situations, there is in fact no easy way to generate a good counterfactual

using standard synthetic control method. Suppose that we observe a time series y1,t exposed to a

treatment at time T. We also observe a basket of time series yj,t, j ∈ (2, 3, . . . , J + 1) to be used as

donors. All time series are of length N. Assuming that the target time series y1,t depends not only on

current yj,t, but also on lags yj,t–l, l ∈ (1, 2, . . . , t – 1), then the model of interest for the behavior of

y1 over time is

y1,t =
J+1∑
j=2

[wj(yj,t + β1,j,tyj,t–1 + β2,j,tyj,t–2 + . . .βt–1,j,tyj,1)] + ϵt, (1)

where βl,j,t is a time-dependent coefficient for the lag term yj,t–l, l refers to the order of the lag, j

to the donor unit, and t to the time. wj is a constant weight for donor yj and its lags, and ϵt is the

error term. We assume that all classical assumptions about ϵt apply. This model explores the speed

problem by allowing a varying number of lags of yj,t to influence the target time series y1,t. The

higher order of lags that have non-zero coefficients, the “slower” y1,t is relative to yj,t—i.e., the more

the past drags on.

Consider now the standard synthetic control approach. As it only includes the current donor

time series yj,t but not the lags yj,t–l, the model used in estimating the weights wsc is not the one of

equation 1, but rather:

y1,t =
J+2∑
j=2

(wjyj,t) + ηt = Y–1,twsc + ηt,

and the new error term ηt is

ηt = Y–1,LβLw + ϵt

where Y–1,L are lag terms, βL are lag coefficients. Clearly, ignoring the lagged effects of the donor

time series results in omitted variable bias. This subsequently leads to a biased estimate of the treatment
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effect and inflated standard errors (see Appendix 4 for a proof ).

Various extensions of the synthetic control method have been introduced to tackle the problems

of poor pre-treatment fits, but none are suitable for the varying speed problem. For example, Ben-

Michael, Feller, and Rothstein (2022) examine the synthetic control method in scenarios where

policies are implemented by different units at distinct times. Other than synthetic control methods,

Goodman-Bacon (2021) discusses how improved difference-in-difference estimators address the bias

from time-varying treatment effects. While many newly-developed methods (Ben-Michael, Feller,

and Rothstein 2022; Ferman, Pinto, and Possebom 2020; Goodman-Bacon 2021) strive to enhance

causal inference outcomes when the data requirements outlined in Abadie and Cattaneo (2021) are

not met, none specifically address the varying speed problem which involves estimating the JNN lag

coefficients.6

In a related paper, Becker and Klößner (2018) have improved the accuracy of the synthetic

control method. They do so by accommodating varying time resolutions and introducing time-

specific weights for donors and predictors. This has broadened the applicability of the method

in analyzing complex economic phenomena with multiple dependent variables and predictors of

differing temporal granularities. Our methodology complements Becker and Klößner (2018) by

addressing the challenge of differential response speeds among units—an aspect of temporal variability

not directly tackled by the focus on time resolution in the work by Becker and Klößner (2018).

By employing a warping technique on the outcome time series yj, we enhance the alignment of

treated and control units, beyond observable characteristics or the temporal granularity of the data.

This process effectively mitigates bias arising from the varying speeds at which units respond to

latent processes or external shocks, ensuring the synthetic control more accurately mirrors the

counterfactual scenario. While the framework by Becker and Klößner (2018) handles varying time

resolutions and introduces time-specific weights for donors and predictors, it does not explicitly

address pre-treatment alignment of outcome series to manage differences in unit response speeds.

Our warping approach specifically fills this gap.7

6. (J donor time series) × (N time periods) × (N/2 backward lags + N/2 forward lags). Please see Appendix 6 for a
discussion of forward lags.

7. More specifically, Becker and Klößner (2018) employ a generalized model that allows multiple dependent variables
and covariates at different time-resolution, time-aggregates and lags. Importantly, it allows for time-specific weights for
dependent variables and covariates so that more weight can be put on the data closer to the treatment time. This reduces the
errors caused in estimating the weights of covariates (inner optimization) and thus yields better weights of donors (outer
optimization) and generates more accurate synthetic control. By reducing the dimensionality of the optimization space
by identifying ‘sunny’/‘shady’ donors, Becker and Klößner (2018)’s method is potentially able to estimate the time-specific
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In this paper, we address the speed problem by relying on Dynamic Time Warping (DTW),

a non-parametric method derived from speech recognition (Vintsyuk 1968), which allows us to

recover speed differences between sequences. The DTW algorithm is widely used to find the optimal

alignment between two time series that may vary in speed. It obtains the alignment by warping the

sequences in the time dimension, such that the Euclidean distance between the warped and the target

sequences is minimized. Determining the best way to warp the series is equivalent to estimating the

lag coefficient βs.

After estimating the lag coefficient βs, we combine the lag terms into a single time series

ywj,t =
t–1∑

l=t–N
β̂l,j,tyj,t–l,

which we refer to as a “warped” time series. Then when applying synthetic control, we replace the

original donor time series yj with the warped time series ywj to mitigate the impact of the speed

problem. 8 We provide details of DSC method below.

3. Accounting for Speed: Dynamic Synthetic Controls

The speed issue arises from two possible sources: those caused by the treatment itself and those

resulting from inherent speed differences (see Figure 1 and the previous section). Here, we introduce

a method designed to mitigate the inherent speed differences between treated and untreated units,

while maintaining the effects induced by the treatment—whether in level or speed. As a result, we

can attribute any post-treatment differences between the two groups exclusively to the treatment.

This approach eliminates the influence of pre-existing speed disparities in the time series.

The Dynamic Synthetic Control (DSC) method introduced below addresses the issue of varying

speeds across time and units. It begins by warping the untreated units to minimize the speed differ-

ences between them and the treated unit. The algorithm extracts information on speed differences

from the pre-treatment period, and adjusts the speed of the entire donor time series to align with the

weights for all possible lags of the donors (Y–1,L). However, for most applications it would not be computationally efficient to
do so, as each donor comes with N lagged units. In addition, estimating all JNN coefficients is typically not feasible given
limited data.

8. DSC uses a non-parametric method, DTW, to estimate the time-specific coefficients for the lagged donor units the
covariates. By warping the donor units and the covariates, it reduces errors caused by speed difference in both inner and outer
optimizations. Since the method finishes the correction before the synthetic control starts, it can be used with synthetic control
extensions such as MSCMT (Becker and Klößner 2018), and further reduces bias caused by poor-performance optimizers.
Together, these methods generate better synthetic controls.
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treated time series.9 This indirect warping approach allows the remaining difference between the

treated and donor units to be attributed exclusively to treatment differences rather than inherent

speed differences. After adjusting the series’ speeds, the standard synthetic control method is applied.

The warping process comprises three steps (see Figure 2 and Algorithm A1 in Appendix 7). First,

we match the pre-treatment parts of the target (black) and the donor (red) time series; second, we

match the post-treatment and the pre-treatment parts of the donor time series; finally, we combine

the time alignments obtained in the previous two steps and create a warped donor time series (blue)

that minimizes the inherent speed difference between itself and the target time series (black). We

now discuss each step in detail.

T

C

Ppre

1. Match y1,pre  and y j,pre

C

PQ→R

2. Match y j,pre  and y j,post

T

C

Ppre

Ppost = PQ→R(Ppre)

3. Warp y j,pre  and y j,post
y1

y j

y j
w

Figure 2. Dynamic Synthetic Control (DSC). The warping process of the DSC algorithm operates in three key steps. First,
it matches the pre-treatment segments of yj and y1 to derive the warping path Ppre. Second, it aligns the pre- and post-
treatment segments of yj , yielding PQ→R. Finally, yj is warped using both Ppre and Ppost to produce the time-warped series
ywj .

9. Importantly, we avoid inferring speed differences from the post-treatment period, as it could conflate the effects of
inherent speed differences and treatment, leading to biased estimates.
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Step 1. Matching Pre-treatment Time Series

The DSC algorithm first estimates the speed relationship between the pre-treatment segments of

the target time series y1 and the donor time series yj. This is achieved by employing the Dynamic

Time Warping method to align the pre-treatment portion of y1 with yj and storing the warping

path matrix.

The warping path matrix stores the results of Dynamic Time Warping (DTW) alignments and

is formally defined as follows:

Pj = [pj,υ,t], υ, t ∈ [1,N]

pj,υ,t =


1 if yj,υ matches y1,t

0 otherwise

y1,3

yj,5

yj,6

y1,13

y1,14

yj,14

y j

y1

DTW

1 1
1 1

1 1
1 1

1 1
1

1
1

1
1

1
1

1
1

y1,3

yj,5 yj,6

y1,14
y1,13

yj,14

y j

y 1

Warping Path

Figure 3. Warping path. The left figure shows data points matched in DTW, connected by dashed lines. The right figure
displays the corresponding warping path matrix, where only matched pairs (ones) are shown. The time series yj initially
progresses at a rate 2× slower (indicated in red) than y1 but later becomes 2× faster (in blue) than y1.

As illustrated in Figure 3, the points of y1 are matched to the points of yj by DTW in a manner

that minimizes the total distance between the matched points.10 The warping path matrix Pj captures

the speed difference between y1 and yj.

We first match the pre-treatment target time series y1,1:T to the donor time series yj (see the first

10. Formally, Pj = argminPj

(∑N
t=1
∑N
υ=1

pj,υ,t|y1,t–yj,υ|∑N
υ=1 pj,υ,t

)
.
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part in Figure 2). The point y1,T is matched to yj,C.11 Let yj,pre = yj,1:C denote the pre-treatment

part of yj and yj,post = yj,C:N the post-treatment portion. Similarly, we define y1,pre = y1,1:T and

y1,post = y1,T:N . Using Dynamic Time Warping, we obtain a warping path from yj,pre → y1,pre,

which is stored in a C × T matrix Pj,pre.

The warping path Pj,pre is used in step three to warp the time axis of yj,pre with the goal of

minimizing the speed difference between yj,pre and y1,pre. Additionally, it is employed along with

the warping path derived from step two to adjust the speed of yj,post.

Step 2. Matching Pre- and Post-treatment Donor Time Series

Learning the warping path between the post-treatment segments yj,post and y1,post is more chal-

lenging. We cannot directly align the two sequences, because their differences are due not only to

their different speeds, but also to the treatment effect. Aligning them would artificially remove that

treatment effect. So the post-treatment warping path Pj,post, i.e., the inherent differences in speed,

must be learned from the pre-treatment path Pj,pre.

To extract similar short-term sequences in yj,post and yj,pre and therefore infer the warping

path Pj,post from Pj,pre, we use a double-sliding window approach.12 In essence, the double-sliding

window serves as a dynamic “lens”—the first window scans through the post-treatment time series

to identify segments requiring alignment, while the second window sifts through the pre-treatment

time series to find the most similar segments, which facilitates optimal matching and warping of

patterns between the two time series. As illustrated in the second part of Figure 2, we slide a target

window Qu in yj,post and a reference window Ri in yj,pre. For each short-term sequence Qu in

yj,post, we find the best-matching sequence R∗ from yj,pre, and record the warping path Qu → R∗ as

Pj,Qu→R∗ . We also extract the corresponding pre-treatment warping path Pj,R∗ : R∗ → y1 from

Pj,pre. Next, Pj,R∗ is adjusted based on Pj,Qu→R∗ to account for the differences between Qu and R∗.

The resulting adjusted warping path is Pj,Qu
. Once the sliding target window Qu reaches the right

boundary yj,N , we merge all the resulting warping paths Pj,Qu
to obtain the final warping path Pj,post

for the post treatment donor time series.13

11. To ensure optimal matching, we do not impose an end rule. Consequently, the matched time series y1,1:T and yj,1:C
may have different lengths.

12. Details on the double-sliding window approach can be found in Appendix 8.
13. To ensure that the resulting warping path Pj,post has the best accuracy, a threshold θ is applied to the DTW distances to

filter out any less desired matches. If for a target window Qu, we cannot find any matches that meet the standard θ, the target
window will be unchanged, i.e. no warping will be given.
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Step 3. Warping Donor Time Series

In the third step, the DSC algorithm uses the previously estimated warping path Pj,pre to warp the

pre-treatment donor series yj,pre. Similarly, it uses Pj,post from the second step to warp yj,post.
14 The

resulting time series are combined into a single warped donor time series ywj :

ywj = [ywj,pre,y
w
j,post]

= [Pj,pre(yj,pre),Pj,post(yj,post)]

After being warped, the inherent speed differences between ywj and y1 are minimized while the

differences caused by the intervention are unchanged. Finally, using the warped donor time series

ywj , j ∈ (2, 3, . . . , J + 1), we apply the synthetic control method to construct a counterfactual of y1 to

minimize the impact of the speed problem.15

All methods discussed in this paper have been implemented in an accompanying R package.16

4. Evaluating the Method

We showcase the advantages of our proposed method using two approaches. First, we create synthetic

data using a Monte Carlo simulation. This lets us design and know the treatment effect, in contrast to

real-world data where the true treatment effect is never known. This allows us to show that, across a

wide range of parameters, our estimate of the treatment effect is more efficient than the one obtained

using the standard synthetic control approach.

Second, we apply the dynamic synthetic control method to data from three seminal articles on

synthetic controls: Abadie and Gardeazabal (2003)’s data on the effect of terrorist attacks on GDP;

Abadie, Diamond, and Hainmueller (2010)’s data on changes in tobacco consumption in California;

14. To warp the time series using a warping path matrix Pj , we first obtain estimates of lag coefficients β̂υ–t,j,t =
pj,υ,t∑N
υ=1 pj,υ,t

,

then combine the lag terms and obtain the warped time series ywj,t =
∑t–1

l=t–N β̂l,j,tyj,t–l .
15. The Dynamic Synthetic Control (DSC) method, in line with traditional synthetic control and difference-in-differences

approaches, operates under the assumption that treatment effects can be distilled into an additive-separable scalar. This
simplification facilitates the estimation of these effects by comparing the outcomes of the treated unit to those of a synthetic
control constructed from donor units. However, we acknowledge that this approach implicitly assumes the treatment’s
exogeneity and does not systematically account for the endogeneity of treatment or the potential complexity of treatment
effects that may not be adequately captured by a single scalar measure. Furthermore, the DSC method assumes negligible
spillover effects from the treatment to the donor units. This assumption is critical, as significant spillover effects would likely
bias the synthetic control methods, especially if the donor units most similar to the treated unit are affected, potentially leading
to an underestimation of the true treatment effect. These considerations reflect broader challenges within causal inference
methodologies. Other threats to identification in our model are discussed in Appendix 5.

16. The R package can be found in Appendix 13.
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and Abadie, Diamond, and Hainmueller (2015)’s study of the economic impact of the 1990 German

reunification. In each case, we demonstrate that our estimates of the placebos are more efficient, such

that the statistical test of the effect of the treatment has greater power.

In each case, we make two main arguments. First, we argue that our method generates a

better counterfactual than the standard synthetic control. Second, we demonstrate that our method

enhances precision by reducing uncertainty in the treatment effect estimate. A key issue in synthetic

control is the possibility that observed effects occur by chance. Existing literature often shows that

while synthetic controls for untreated units (placebo units) generally yield less extreme results than

the treated unit, the confidence intervals remain wide. Our Dynamic Synthetic Control method

effectively narrows these intervals, thereby improving estimator precision.

4.1 Monte-Carlo simulation

We first use a Monte Carlo simulation to replicate the types of empirical challenges faced with real

data. We generate hundreds of artificial panel datasets, each containing time series for ten units

observed over 100 periods. In each sample of ten series, one time series is designated as the "treated"

unit, while the remaining nine serve as the donor pool to construct the synthetic control (i.e., J = 9,

N = 100).17

All ten time series follow a common Autoregressive integrated moving average (ARIMA) process

but exhibit differing speeds. A time series’ speed is either random or a function of the time series

direction (increasing or decreasing). The idea behind it is to capture the possibility that speed may

vary as a function of the direction of the underlying series. Economic crashes (i.e. a decreasing

series), for example, may unfold faster than recoveries (Reinhart and Rogoff 2014). A dataset-specific

parameter ψ ∈ (0, 1), determines the extent to which this occurs. For instance, ψ = 0 implies that

the speed will be entirely governed by a random normal noise. Conversely, if ψ = 1, the speed will

completely depend on the direction of the time series.

For each dataset, we implement Dynamic Synthetic Control (DSC) and standard Synthetic

Control (SC) to construct counterfactuals for the treated unit. A key advantage of the Monte Carlo

simulation, as opposed to real observational data, is that we know the true treatment effect and

thus the true counterfactual. Consequently, we can assess how well counterfactuals formed using

17. Detailed data generation method is shown in Appendix 10.
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different methods approximate the post-treatment series. In accordance with common practice in the

literature, we evaluate the performance of each method over the 10 periods following the treatment,

i.e., from t = 61 to t = 70.

To evaluate the quality of the synthetic control generated by each method, we compute the

10-period post-treatment Mean Squared Error (MSE) for the estimated treatment effects. Specifically,

the MSE for dataset d is defined as: MSEd = 1
10

∑70
t=61(τ̂t,d – τt)

2, where τ̂t,d denotes the estimated

treatment effects using one of the two synthetic control methods. A small MSE indicates that the

estimated treatment effect closely fits the true effect imposed during the data generation process.

For each simulation, we calculate the MSE for the standard Synthetic Control approach—MSESC—

and the MSE for our Dynamic Synthetic control approach—MSEDSC. The log ratio of these

two values yields a measure r representing the relative performance of each method, that is, r =

log (MSEDSC/MSESC). Negative log ratios suggest superior performance of our method via lower

MSE. We compute the log ratio r for each simulated data set and conduct a t-test on the resulting

100 log ratios to assess whether the ratio is significantly different from 0 (p < 0.01).

The estimated treatment effects for all data sets are illustrated in Figure 4. We see that, in the

ten periods following the treatment, the average estimated treatment effects from the two methods

are close to the true effects. However, the new method, DSC, produces a significantly smaller error

area than the standard method. Specifically, the average logged MSE for the standard SC method

(log(MSESC)) is 0.73, while the value for the DSC method (log(MSEDSC)) is –0.53.18Moreover, our

approach outperforms the standard method 77% of the time (Wilcox test < 0.001). These results

suggest a strong expected benefit to using this method and are in line with our theory: Section 2

shows that the estimated treatment effect from SC is potentially biased and has a larger variance. In

the Monte Carlo study, we do not directly observe bias because the biases around the true values

tend to average out to zero. But it is clear in the Monte Carlo results that the SC estimator has a

higher variance, and hence that the DSC estimator of the treatment effect is more efficient.

Finally, we also show that the results hold for all values of ψ—the parameter which controls the

extent to which speed varies as a function of the shape of the series (see the subfigure in Figure 4),

although larger ψs lead to more significance (more negative t value). When ψ = 1, the average log

ratio of Mean Squared Errors (MSEs) is r̄ = –1.26. This value indicates that, on average, the Dynamic

18. We use the log of the MSEs because outliers can take on too much weight in non-pairwise mean comparisons.
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Synthetic Control (DSC) method reduces the MSE of the estimated treatment effect by 71.63%

when compared to the standard Synthetic Control (SC) method (1 – e–1.26 ≈ 71.63%).
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Figure 4. Results from the simulation study with 95% confidence intervals. The main graph showcases results drawn
from Monte Carlo simulations whereψ = 1. The grey shaded region delineates the period over which performance is
estimated. Red and blue lines represent the distribution of estimated treatment effects for the Dynamic Synthetic Control
(DSC) and Synthetic Control (SC) methods, respectively. The true treatment effect is in black. An inset in the top-left corner
demonstrates that largerψ values lead to improved performance—as evidenced by more negative t-values.

4.2 Re-evaluating Empirical Findings

We now show that these results are not limited to artificial data but extend to real-world empirical

data. Specifically, we apply our method to three seminal articles in the synthetic control literature:

Abadie and Gardeazabal (2003)’s analysis of the economic costs of terrorism in the Basque country;

Abadie, Diamond, and Hainmueller (2010)’s assessment of the effect of Proposition 99—a large-scale

tobacco control program implemented in California in 1988; and Abadie, Diamond, and Hainmueller

(2015)’s evaluation of the economic impact of the 1990 German reunification on West Germany.19

19. The role of covariates, xj,k, raises important considerations regarding their speed relative to the outcome variable, yj.
While covariates matching the outcome’s speed may not affect our conclusions significantly, it may be possible to mitigate



16 Jian Cao et al.

One challenge, of course, is that we do not know the true treatment effect for the main unit of

interest. This effect must be estimated and, unlike in the Monte-Carlo study, there is no way to

argue that a particular result is more accurate or less biased than another. However, we do know that

there is no treatment effect in the other (non-treated) units. Thus, we can assess the performance

of the estimators by comparing how well their respective synthetic controls approximate the true

post-treatment period for non-treated units. For example, we cannot know the true effect of the

German reunification on West Germany’s GDP, but we do know that there was no treatment

in Canada, and can thus attempt to match Canada’s post-1990 trajectory—as well as each of the

untreated units.20 Due to the limited set of untreated units, however, this is not enough to yield a

sufficiently large set of estimates for comparison. We therefore use jacknife resampling to generate

more datasets in which we randomly remove one of the countries.

We now review each of the three datasets and the results obtained using each method.

Terrorism and GDP per capita in the Basque country. Abadie and Gardeazabal (2003) find that

the outbreak of terrorism in the late 1960’s significantly affected per capita GDP in the Basque

Country. When compared to a synthetic control region without terrorism, the Basque Country’s

GDP declined by about 10 percentage points.

Our estimate of the effect on the Basque country is similar to the standard synthetic control

estimate. However, when we build synthetic controls for the untreated units themselves, we find that

they are closer to the true trajectory than is the standard synthetic control. Figure 5 (top) displays

the distribution of our estimated treatment effects for all untreated units. Since these units did not

receive a treatment, our synthetic control should ideally be as close as possible to the post-treatment

values of the time series. In other words, the average difference between the post-treatment series

and the synthetic control should deviate as little as possible from zero. Visually, we observe that the

band for our approach is narrower than the one for standard synthetic control.

However, this plot does not capture the full extent of the true improvement, as we should be

comparing the pairwise performance of each algorithm (instead of the pooled comparison shown

the speed differential in yj by weighting predictors more heavily, potentially bypassing the need for yj entirely (Becker and
Klößner 2018; Kaul et al. 2022). Our analysis here relies on un-warped covariates. However, we show in appendix Appendix
11 that the results with warped covariates are very similar. We thank an anonymous reviewer for this suggestion.

20. That is, we estimate the ‘treatment effect’ for Canada using Japan, France, the USA, etc.; we estimate the treatment
effect for France using Japan, Canada, Japan, and so on for all untreated units.
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here). To more formally demonstrate the improvement, we calculate the Mean Squared Error for each

synthetic control compared to the unit of interest. We then calculate a t-test of log(MSEDSC/MSESC).

A negative value indicates that our MSE is smaller than the one obtained with the standard approach.

We find that this is indeed the case. The log ratio of the MSEs is significantly less than zero

(t = –7.6, p < 0.0001).21

In terms of our ability to make inferences, the observed reduction in Mean Squared Error (MSE)

when employing the Dynamic Synthetic Control (DSC) method suggests its superior efficiency

compared to traditional Synthetic Control (SC) methods. In short, our DSC approach more closely

approximates the true treatment effects and therefore enhances the robustness and reliability of our

causal inference.

The Effects of Proposition 99 on Tobacco Sales in California. Abadie, Diamond, and Hainmueller

(2010) study the impact of Proposition 99, a large-scale tobacco control program implemented in

California in 1988. They show that by 2000, California’s per-capita cigarette sales were 26 packs

fewer than would have been expected without Proposition 99.

Our analysis suggests that the effect might in fact be greater, with an estimated reduction of

about 31 packs in cigarette sales. Although it is impossible to definitively determine which estimate

is more accurate, as the true treatment effect remains unknown, we do find that our estimates of the

post-treatment behavior of states other than California is closer to the true path than is the standard

synthetic control, with smaller MSE ratios (t = –4.9, p < 0.001).22

The Effects of the German Reunification on West Germany’s GDP per capita. Finally, Abadie,

Diamond, and Hainmueller (2015) seek to estimate the economic impact of the 1990 German

reunification on West Germany. They find that the per-capita GDP of West Germany was reduced

by on average about 1,600 USD per year over the 1990-2003 period, which is approximately 8% of

the 1990 level. In 2003, the last year of their study period, The estimated per-capita GDP in the

synthetic data is about 12% higher than in the real data.

21. The raw MSEs are as follows: log(MSESC) = 10.05, log(MSEDSC) = 9.88.
22. log(MSESC) = 4.08, log(MSEDSC) = 4.01. Note that the synthetic controls generated by our method are shorter than

those of the standard synthetic control. This is due to the warping adjustments made to account for varying speeds. Some of
the time series are warped to a shorter length due to their slower speeds relative to the target time series (See Appendix 12 for
more detail).
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Figure 5. Placebo tests, real data. We revisited the placebo tests reported in Abadie and Gardeazabal (2003), Abadie,
Diamond, and Hainmueller (2010) and Abadie, Diamond, and Hainmueller (2015). The plots report the placebo tests for each
of these studies, using standard synthetic controls (blue) and dynamic synthetic control (red). In addition, the estimated
treatment effects for the treated units—Basque Country, California State, and West Germany—are shown as thick, brighter
lines. For each study, find that our placebo estimates exhibit smaller variance than those using standard synthetic controls,
which do not account for variations in speed.

In this replication, our estimate of the treatment effect on West Germany is similar to the one of

Abadie and Gardeazabal (2003), and visually the 95% quantile areas of the estimated treatment effect

of two synthetic control methods on the untreated countries are also close. But in the pair-wise

comparison, we find that the DSC method generally exhibits a reduced Mean Squared Error (MSE)

in estimating treatment effects for control countries, compared to the standard Synthetic Control
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approach (t = –4.1, p < 0.001).23

Overall, our findings on all three empirical studies indicate that the Dynamic Synthetic Control

(DSC) method offers significant advantages when compared to the standard Synthetic Control (SC)

approach. In particular, DSC achieves closer approximations to the true trajectories of non-treated

units, as evidenced by the observed reduction in Mean Squared Error (MSE). As a result, the DSC

method provides a more accurate approximation of the true treatment effects. It is a more efficient

estimator of the treatment effects and mitigates the risk of biased estimates.

5. Conclusion

In this study, we tackle the issue of varying reaction speeds across different units when estimating

causal effects of treatments. This issue arises from the fact that units—such as states, cities, or people—

may adjust and react at different speeds due to a multitude of factors, including legal constraints,

institutional differences, and the nature of the treatment itself. Ignoring speed variations can bias

estimates and conclusions, weakening the validity of treatment effect analyses.

We introduce the Dynamic Synthetic Control (DSC) method, which extends the synthetic

control approach by integrating a Dynamic Time Warping (DTW) algorithm to adjust for speed

differences. By doing so, the DSC method enables researchers to construct counterfactuals that

more accurately represent the hypothetical outcomes for treated units without the treatment, with

improved precision and efficiency of treatment effect estimates compared to the standard synthetic

control method.

Through Monte Carlo simulations and real-world datasets, we show that DSC outperforms

standard synthetic control in treatment effect estimation. It reduces uncertainty and boosts test

power, minimizing the risk of false conclusions. These results highlight the value of our approach in

addressing the speed problem and improving the accuracy and precision of treatment effect estimates.

Future research will be needed to explore the applications of DSC in various settings, such as

assessing the impact of policies, interventions, or shocks across multiple dimensions and over different

time horizons. Additional research could also assess DSC’s sensitivity to unobservable variables and

endogenous regressors.

23. log(MSESC) = 13.90, log(MSEDSC) = 13.79.
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Supplementary Material

Appendix 1. The notion of speed

The notion of “speed” in this analysis is fundamentally about the responsiveness of an outcome

variable, denoted by yt, to fluctuations in a latent driving process, zt. This concept is illustrated

through the relationship between yt and both current and past values of zt, encapsulated in a series

of lagged coefficients.

Consider the formulation of the outcome variable y1,t as influenced by zt and its historical values:

y1,t = β1,0zt + β1,1zt–1 + β1,2zt–2 + · · · + β1,t–1z1,

where each coefficient β1,l captures the influence of zt at lag l on y1,t. A nonzero value of β1,l

signifies that y1,t is affected by zt not just in its current state but also as it existed l periods ago. The

presence of higher-order nonzero lag coefficients indicates a delayed response of y1,t to changes in

zt, typifying a "slower" speed of adjustment.

To differentiate speeds between outcomes, consider another outcome variable y2,t modeled

similarly:

y2,t = β2,0zt + β2,1zt–1 + β2,2zt–2 + · · · + β2,t–1z1,

If we denote the highest-order nonzero lag coefficient for y1,t as β1,l1 and for y2,t as β2,l2 , the

comparison of l1 and l2 provides a relative measure of speed: if l1 < l2, it indicates that y1,t responds

more rapidly to changes in zt than does y2,t, rendering y1,t "faster" in terms of its reaction time to

the latent process dynamics.

This approach allows us to quantitatively assess and compare the speed at which different outcomes

adjust to the underlying latent process.
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Appendix 2. The speed problem with lags and polynomials

In an attempt to improve the synthetic control’s approximation to the treated unit y1, one might

consider enriching the model by adding time lags and polynomial terms. Specifically, in addition to

the original control units y2 and y3, we extend the set of potential controls to include their lags (up

to lag 5) and polynomial terms (up to the 5th degree). These extensions aim to capture additional

dynamics and non-linearities in the data.
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Figure A1. The Challenge of Varying Speeds in Treatment Effect Estimation. A researcher aims to quantify the impact of
a treatment on unit y1. Unbeknownst to them, no treatment effect actually exists. When employing standard synthetic
control methods that incorporate control units y2 (slow) and y3 (fast) along with their lags (1–5) and polynomial terms (2–5),
the estimated post-treatment effect (represented by the blue curve) significantly diverges from the true outcome (indicated
by the black curve). In contrast, the Dynamic Synthetic Control method produces an estimated synthetic control that more
closely approximates the true trajectory.

As illustrated in Figure A1, however, the inclusion of these additional terms does not appreciably

improve the performance of the synthetic control. The blue and yellow curves represent the synthetic

control derived from expanded sets of potential controls. The blue curve, for example, solves the

following:

W∗ = argminW∗

∣∣∣∣∣∣
∣∣∣∣∣∣y1 –

Y–1β
∗ +

5∑
l=1

LlY–1γ
∗ +

5∑
k=2

Yk
–1γ

∗

∣∣∣∣∣∣
∣∣∣∣∣∣
2

,

where Ll is the lag operator.

However, both the blue and the yellow curves still deviate from the true trajectory (black curve)
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of unit y1. Consequently, one might still erroneously infer a treatment effect where none exists,

highlighting the limitations of standard synthetic control methods in handling varying speeds among

control units.
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Appendix 3. Synthetic Controls: A refresher

Formally, suppose that we have data for J + 1 units.24 For time t ∈ (1, 2, . . . ,N), We observe a

target unit y1,t that receives a treatment, and J units yj,t, j ∈ (2, 3, . . . , J + 1) that are untreated and

can therefore be used as donor units. Each unit is observed for N periods, and we assume that

the treatment takes place at time T. For each unit, we might also observe a set of k predictors

z1,j, z2,j . . . , zk,j, although for simplicity we do not include them in the model below.25 Formally, a

synthetic control can be represented by a J × 1 vector of weights, w = (w2,w3, . . . ,wJ+1)′, and the

synthetic control estimator of yN1,t (the potential response in the absence of intervention) is then:

ŷN1,t =
J+1∑
j=2

wjyj,t

In other words, synthetic controls are weighted averages of the units in the pool of donors. The

estimated effect of intervention is then:

τ̂t = y1,t – ŷN1,t

The key question is how to choose the weights wj. There are many possibilities, ranging from

assigning equal weights to all control units to using a population-weighted unit. A sensible approach

is to choose w2,w3, . . . ,wJ+1 such that the resulting synthetic control ŷN1,t is as close as possible to the

pre-intervention time series for the treated unit as possible (Abadie and Gardeazabal 2003; Abadie,

Diamond, and Hainmueller 2010). By minimizing the distance between the trajectory of the treated

unit and the combined untreated units, we build a synthetic control that is as close as possible to the

(unobservable) counterfactual.

24. This section largely follows Abadie (2021).
25. The predictors can be added after warping for time-constant predictors, or the same algorithm described below can be

applied to these predictors for time-varying variables.
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Appendix 4. Bias of the synthetic control estimate when the time series have different speeds

In this appendix, we demonstrate that the standard synthetic control estimator may produce biased

results when different units respond to shocks at different speeds. Mathematical proofs and models

are presented here to support these claims.

Suppose that the target time series y1 and the donors yj, j ∈ (2, 3, ..., J + 1) are of length N. Let T

denote the treatment time and let the treatment effect be zero. To obtain weights w, the synthetic

control method essentially estimates the following model:

y1,t =
J∑
j=2

(wjyj,t) + ϵt, t < T

if the usual assumptions of the error term hold, then the least square estimate of the weights ŵ is

unbiased and efficient, and can produce a synthetic control that is the closest to the target time series

y1.

However, when the time series have different speeds, i.e. each time series has its own delays

to responding to the common exogenous shocks z, and the delays vary over time, then the usual

assumptions of the error term in model (4) are violated and it introduces bias to ŵ.

Taking the different speeds into account, model (11) becomes:

y1,t =
J∑
j=2

[wj(yj,t + β1,j,tyj,t–1 + β2,j,tyj,t–2 + . . .βt–1,j,tyj,1)] + ϵt

= (Y–1,t + Y–1,t–1β1,t + . . . + Y–1,1βt–1,t)w + ϵt

where Y–1,t is a vector of donor units at time t, Y–1,t = (y2,t, y3,t, ..., yJ ,t), and Y–1,t–1, Y–1,t–2, ... ,

Y–1,1 are all possible lags at time t. w is the time-independent coefficient. βl,t are time-dependent

coefficients of the lags. ϵ ∼ N(0,σ2I) is the error term.

Model (13) allows a varying dependency of the target variable y1 on lags of the donor variables

Y–1. This varying dependency captures the different speeds that y1 and Y–1 respond to the common

exogenous shocks z.

If the time series have different speeds and (13) is the true model, the original synthetic control

method would obtain biased estimates of the treatment effect as the lag terms are omitted.
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Pre-treatment Period

In traditional synthetic control analysis, the model of interest is,

y1,t = Y–1,twsc + ηt

the new error term ηt is

ηt = Y–1,t–1β1,tw + . . . + Y–1,1βt–1,tw + ϵt,

which is the summation of the original error term ϵt and the lag termsY–1,t–1β1,tw+. . .+Y–1,1βt–1,tw.

According to Greene 2003, the expectation of ŵsc is

E[ŵsc] = w + GβLw

where G = (Y′–1Y–1)–1Y′–1Y–1,L. Y–1,L is a matrix of lags of Y–1, and βL is matrix of corresponding

coefficients.

The expectation of residual

E[η̂] = E[Y–1,LβL + ϵ]

= E[Y–1,LβL] + 0

depends on the existence of lag effects. If lag effects exist, i.e. E[Y–1,LβL] ̸= 0, η̂ is biased.

The variance of residual

Var(η̂) = Var(Y–1,LβL + ϵ)

= Var(Y–1,LβL) + Var(ϵ) + 0

= Var(Y–1,LβL) + σ2I

≥ σ2I

is at least σ2I. If the lag effects exist, i.e. E[Y–1,LβL] ̸= 0, Var(η̂) > σ2I.
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On the contrary, in dynamic synthetic control, the model of interest is:

yt = Y∗–1,twdsc + ϵt

where

Y∗–1,t = Y–1,t + Y–1,t–1β1,t + . . . + Y–1,1βt–1,t. (A1)

The expectation of ŵdsc is

E[ŵdsc] = w

Note the error term is the same as in model (2). so the expectation of residual is just

E[ϵ̂] = 0

and the variance of residual

Var(ϵ̂) = σ2I

Therefore, if time series have different speeds, i.e. effects of lags of Y–1 are not zero, in the

pre-treatment period, traditional synthetic control method would fail to obtain a synthetic control

that closely resembles y1.

Post-treatment Period

In post-treatment period, both synthetic control methods estimates the treatment effect using post-

treatment y1,Y–1 and pre-treatment ŵsc, ŵdsc. For cleaner notation, let A denote the pre-treatment

period and B denote the post-treatment period.

The estimated treatment effect from traditional synthetic control is:

τ̂sc = yB1 – YB
–1ŵ

A
sc
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The expectation of τ̂sc is

E[τ̂sc] = E[yB1 – YB
–1ŵ

A
sc ]

= E[(YB
–1w + YB

–1,Lβ
B
L) – YB

–1ŵ
A
sc ]

= E[YB
–1,Lβ

B
L + YB

–1(w – w – GAβA
Lw)]

= E[YB
–1,Lβ

B
L – YB

–1G
AβA

Lw]

Whether the expectation of τ̂sc equals to zero depends on Y–1, Y–1,L, βL, and w. There are

two sources of bias. One is omitted lag effects, YB
–1,Lβ

B
L. The other is biased estimate of weights,

–YB
–1G

AβA
Lw. The two sources of bias are both zeros only when the lag effects are zero, i.e.

E[Y–1,LβL] = 0. Otherwise, as the two sources of bias are only marginally correlated (Y–1 and

Y–1,L have some common terms), it is very rare that the two parts have different signs and add up to

zero, which means that the estimated treatment effect from traditional synthetic control is highly

likely biased.

The variance of τ̂sc

Var[τ̂sc] = Var(yB1 – YB
–1ŵ

A
sc )

= Var[(YB
–1w + YB

–1,Lβ
B
L + ϵ) – YB

–1ŵ
A
sc ]

= Var[YB
–1,Lβ

B
L – YB

–1G
AβA

Lw + ϵ]

= Var[YB
–1,Lβ

B
L – YB

–1G
AβA

Lw] + σ2I

is larger or equal to σ2I. The equal sign holds only when τ̂sc is not biased, i.e. (25) equals zero.

Instead, the estimated treatment effect from dynamic synthetic control is

τ̂dsc = yB1 – Y∗B–1 ŵ
A
dsc



30 Jian Cao et al.

The expectation of τ̂dsc is

E[τ̂dsc] = E[yB1 – Y∗B–1 ŵ
A
dsc]

= E[yB1 – Y∗B–1 w]

= E[ϵB]

= 0

The variance of τ̂dsc is

Var[τ̂dsc] = Var(yB1 – Y∗B–1 ŵ
A
dsc)

= Var[(YB
–1w + YB

–1,Lβ
B
L + ϵ) – YB

–1ŵ
A
sc ]

= Var(yB1 – Y∗B–1 w)

= Var(ϵB)

= σ2I

Therefore, when time series have different speeds, dynamic synthetic control method can produce

unbiased and efficient estimate of the treatment effect while the traditional synthetic control method

would most likely produce biased estimates and inflated variances.
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Appendix 5. Discussion of identification threats

This section addresses some of the challenges of identifying causal effects in the presence of unobserved

heterogeneity. Specifically, it examines the impact of an unobserved characteristic, φj, which

influences both the likelihood of treatment and the dynamics before and after treatment, thereby

affecting the interpretation of the results. We discuss here how this unobserved factor affects the

estimation of treatment effects and implications for empirical analysis.

The outcome yj can be written as:

yj = fy(sj,Xj, z) + πjτj,

where fy(sj,Xj, z) is the outcome time series, which is determined by the universal shocks z that

applied to all units, speed profile sj, and predictors Xj. The second part πjτj is the random treatment,

where πj is the probability of receiving a treatment and τj is the treatment effect.

Assume the treatment also changes the speed profile. The new speed profile s
′

j can be simplified

as a combination of the original speed and the changes in speed:

s
′

j = sj + ∆sj

Given the speed changes, the treatment effect τj consists of two parts:

τj = fy(∆sj,Xj, z) + fy(sj + ∆sj,Xj,θ),

The first part fy(∆sj,Xj, z) is caused by changes in speed. The second part fy(sj +∆sj,Xj,θ) is caused

by the treatment θ.

Assume there is an unobserved characteristic φj affects both the speed profiles and the probability

of receiving a treatment:

sj = fs(φj)

∆sj = f∆s(φj)

πj = fπ(φj),
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If the research focus on the expected treatment effect for all units, it is of the form:

1
J + 1

J+1∑
j=1
πjτj

The unobserved characteristic φj affects the result in the way that, for units who have larger

probability to receive treatments, their reaction to the treatment, e.g. slow/fast response speed,

reduced/amplified response level, and etc., will highly influence the expected treatment effect.

If the research focus only on the treatment effect on the treated units, the model is reduced to a

conditional form:

y1 = fy(s1,X1, z) + τ1

yj = fy(sj,Xj, z),

conditional on y1 received the treatment and the others did not.

To estimate the treatment effect, we first warp the donor units yj to make them align to the speed

of y1:

ywj ≈ fy(s1,Xj, z)

Then we estimate the weights and generate a synthetic control that closely resembles unit y1

prior to the treatment.

ydsc1 = yw–1w ≈ fy(s1,X1, z)

The estimated treatment effect is:

τ̂1 = y1 – ydsc1

≈ fy(∆sj,Xj, z) + fy(sj + ∆sj,Xj,θ).

The unobserved characteristic φ1 affects the result through post-treatment dynamics sj and ∆sj.

Next, we discuss how would spillovers from the treatment to the donor units affect the results.
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Suppose the treatment effect is τt and that the spillover effect on donor unit j is, for simplicity, an

additive term of the form pjτt, pj ∈ (0, 1). Then the affected donor unit j would be:

y
′

j,t = yj,t + pjτt

Since the patterns in the post-treatment donor unit are affected by the spillover, there is a risk that

they may now be matched to the wrong pre-treatment sequences. There are two cases to consider:

Case 1: The matched sequence is correct. When warping the donor unit, both original donor

unit and the spillover effect are warped:

yw,′
j,t = ywj,t + pjτ

w
t .

The addition of the warped spillover effect pjτ
w
t will cause bias. If the spillover effect is warped

faster, i.e. the effect unfolds in a shorter period of time, then the warped spillover effect would be

larger, i.e. |pjτ
w
t | > |pjτt |. Otherwise, if the spillover effect is warped slower, then the effect is smaller

|pjτ
w
t | < |pjτt |. However, notice that no matter whether the spillover effect is warped faster or slower,

its consequence is still to dampen our estimate of the treatment effect. The warping does not affect

the direction of the bias. The bias is always toward underestimation. What the warping does is affect

whether the underestimation is more or less severe—more severe when the spillover effect is sped up,

less severe when it is slowed down.

Case 2: If, on the other hand, the matched sequence is incorrect, then the warped donor unit

would be:

yw,′
j,t = (ywj,t + ϵj,t) + pjτ

w
t ,

where errors ϵj,t are introduced because the donor unit is incorrectly warped. The errors ϵj,t could

be either positive or negative. If the combination of errors and warped spillover effect is in the same

direction of the treatment effect (have the same sign), i.e., if:

(ϵj,t + pjτ
w
t ) × τwt > 0,
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the treatment effect will be underestimated. If the combination is on the opposite direction of the

treatment effect (have different signs), the treatment effect will be overestimated.
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Appendix 6. The forward lag coefficients

In model 1, y1,t can be influenced not only by past values of yj,t, but also by its future values. This

does not suggest that the future impacts the past. Instead, suppose that both yj and y1 are functions

of a latent variable z—a variable representing true underlying shocks—while the observed time

series for units yj and y1 are the manifestations of the shocks. In this situation, the observed time

series are always slowed-down versions of z, but at different rates. For example, the time series for y1

may reflect changes in z immediately, whereas there may be a delay for yj. As a result, we would

observe that y1,t is a function of the future of yj,t, simply because y1 reacts faster to changes in z than

yj does. This phenomenon, for example, occurs in the US financial markets, where the reactions

of the bond and stock markets to sudden changes in the Federal Reserve’s monetary policies often

occur at different speeds (Fleming and Remolona 1999). After the announcement of an interest rate

hike, the bond market reacts to the news instantaneously, while the stock market requires active

trading to adjust prices. In such cases, we observe a strong correlation between current bond prices

and stock prices shortly thereafter. This means that, in order to correct for the relative speeds of

yj and y1, we need not only consider past lags of yj, but also forward lags. The forward lags have

non-zero coefficients when y1 is faster than yj. However, note that since y1 and yj are always slower

than the latent common exogenous shocks z, the forward lags of yj are associated with exogenous

shocks that have already occurred, not future events. We do not suggest that the future affects the

past, but rather simply that yj and y1 react at different speeds to z, and hence that y1 may appear to

be a function of future yj. This implies that there are really a total of JNN potential coefficients to

estimate ((J donor time series) × (N time periods) × (N/2 backward lags + N/2 forward lags)).
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Appendix 7. The Dynamic Synthetic Control algorithm

Algorithm A1 Dynamic Synthetic Control (DSC)
Input: y1 = {y1,1, y1,2, ..., y1,N}: time series with treatment.

yj = {yj,1, yj,2, ..., yj,N}: J time series without treatment.
T: treatment time.
Cj: cutoff time of yj.
k: size of the sliding window.
m: margin of the sliding window.
nQ: increment for sliding the target window.
nR: increment for sliding the reference window.
θ: threshold of distance in window matching.

Output: synthetic control yN1 .
Process:

1: j← 1
2: for j = 2 to J + 1 do
3: Step 1: Match y1,1:T and yj;

4: DTW match y1,1:T and yj with open.end = TRUE,
5: save yj,1:Cj

that matches y1,1:T as yj,pre,
6: save yj,Cj :N as yj,post , y1,1:T as y1,pre, and y1,T:N as y1,post
7: save warping path yj,pre → y1,pre as Pj,pre,

8: Step 2: Match yj,post and yj,pre (double sliding window);

9: u← 1; Pi ← NULL
10: while u ≤ length(yj,post) – k do
11: locate target window Qu = yj,post[u : (u + k)],
12: i← 1; costs← NULL
13: while i ≤ length(yj,pre) – k – m do
14: locate reference window Ri = yj,pre[i : (i + k + m)],
15: DTW match Qu and Ri with open.end = TRUE,
16: save DTW distance to costs,
17: i← i + nR.
18: end while
19: if min(costs) ≤ θ then
20: find i∗ that minimizes costs,
21: locate reference window R∗ = yj,pre[i

∗ : (i∗ + k + m)],
22: subset Pj,pre and obtain warping path Pj,R∗ ,
23: save warping path Qu → R∗ as Pj,Qu→R∗ ,
24: obtain warping path Pj,Qu

= Pj,Qu→R∗ (Pj,R∗ ),
25: store Pj,Qu

in list Pj,
26: end if
27: u← u + nQ.
28: end while
29: merge all Pj,Qu

in Pj, obtain Pj,post .

30: Step 3: Warp yj according to y1

31: ywj = [Pj,pre(yj,pre),Pj,post(yj,post)].

32: end for
33: Step 4: use ywj , j ∈ (2, . . . , J + 1) to construct synthetic control yN1 .

34: return yN1
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Appendix 8. Deriving post-treatment warping paths from pre-treatment warping paths

To derive the warping path Pj,post from Pj,pre, we first match the short-term patterns in yj,post to the

patterns in yj,pre, and for each matched pattern in yj,pre, we obtain a sub-warping path matrix by

subsetting Pj,pre; then we adjust the sub-warping path matrix according to the DTW matching from

the pattern in yj,post to the pattern in yj,pre; lastly, we combine the adjusted sub-warping path and

obtain Pj,post.

To find the similar patterns in yj,post and yj,pre, we use a double-sliding windows approach as

shown in the second part of Figure 2. The first sliding window is in yj,post and the second in yj,pre,

Specifically, for any target window Qu in the post-treatment time series yj,post, the method finds

an optimal reference window R∗ in the pre-treatment time series yj,pre that minimizes the DTW

distance between Qu and Ri. Pattern R∗ is therefore the closest match to pattern Qu:

R∗ = argminRi
[DTW(Qu,Ri)],

Qu = yj,u:(u+k), u ∈ [C,N – k], k ∈ Z+

Ri = yj,i:(i+k+m), i ∈ [1,C – k – m],m ∈ Z0

where k is the default size of the sliding windows, and m is an extra right boundary of the reference

window Ri for the open-end DTW, i.e. allowing the the target window Qu to freely match to a

pattern that is within Ri, which enables the DSC algorithm to consider patterns in different lengths.

m is chosen by the user to ensure it is large enough to have the matching achieved within Ri, while

as small as possible to reduce the computational burden.

We recommend using slope-constrained step patterns such as symmetricP2 or asymmetricP2 in

DTW to avoid extreme warping paths. In addition, all windows are normalized before DTW for

better matching results.

If no similar pattern can be found in yj,pre, i.e. min(costs) is too large, R∗ can not provide enough

information to help build the warping path Pj,post. Instead, including poor matches would introduce

noise to the warping path. To avoid this problem, we use a threshold θ to filter out the poor matches.

For each pattern Qu that has a close match R∗ whose DTW distance does not exceed the threshold

θ, the warping path Qu → R∗ is stored in a k× (k + m) matrix Pj,Qu
. Although Qu and R∗ are close

matches, they are not identical. We can not directly use warping path Pj,R∗ (i.e. sub-matrix of Pj,pre



38 Jian Cao et al.

that warps R∗ towards y1,pre) to warp Qu. We need to adjust Pj,R∗ and take the difference between

Qu and R∗ into account.

To help transform Pj,R∗ using Pj,Qu
, we can transform the warping path matrix Pj,pre into a

Speed Profile (SP):

ϕj,pre = {Pj,pre[diag(I1×CPj,pre)
–1]}IT×1

where I1×C is a row of ones of length C, and similarly, IT×1 is a column of ones of length T.

A speed profile can also be seen as a one-dimensional version of the warping path matrix. It

generates the same warped time series as the warping path matrix does. The difference between a

speed profile and a warping path matrix is that the speed profile only supports single-direction warping,

while the latter supports both directions. Since we are not interested in warping y1,pre → yj,pre, in our

case, an one-dimensional speed profile works as well as a warping path matrix. And most importantly,

it greatly simplifies the process of deriving the warping path Pj,post, as we can use a sub-speed profile

to warp the corresponding window of time series and ignore the remaining speed profile without

losing any information. In our method, a reference window Ri = yj,i:(i+k+m), i ∈ [1,C – m – k] can be

warped towards y1,pre using the sub-speed profile ϕRi
= ϕj,pre[i : (i + k + m)].

The DSC algorithm then uses the warping path Pj,Qu
: Qu → R∗, to transform the sub-speed

profile ϕj,R∗ and obtains a new speed profile ϕj,Qu
for Qu → y1,post. The speed profile ϕj,Qu

on one

hand preserves the speed relationship between yj,pre and y1,pre, on the other hand, makes adjustments

and makes sure the difference between Qu and R∗ is taken into account. Specifically, without losing

generality, in matching target window Qu and its closest reference window R∗, if one data point

Qu[s] matches one or more data points R∗[p : q], we define the weight of Qu[s] in speed profile is

the average of the weights of R∗[p : q]. Formally,

ϕj,Qu
[s] =

∑
i∈[p,q]ϕj,R∗[i]
q – p + 1

, s ∈ [1, k], 1 ≤ p ≤ q ≤ (k + m)

The transformed speed profile ϕj,Qu
can be obtained through the following process:

ϕj,Qu
= {[diag(Pj,Qu

I(k+m)×1)–1]Pj,Qu
}ϕj,R∗
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The resulting speed profiles ϕj,Qu
, u ∈ [C,N – k] are stacked in a (N – C – k + 2) × (N – C + 1)

matrix ϕj:

ϕj = [ϕj,ξ,υ], ξ ∈ [1,N – C – k + 2],υ ∈ [1,N – C + 1]

ϕj,ξ,υ = ϕj,Qu
[υ – ξ + 1]

And the estimate of the speed profile ϕj,post is the column mean of the stacked weight matrix ϕj:

ϕj,post = I1×(N–C–k+2)ϕj

Please see Appendix 9 for the method to warp time series using a speed profile.
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Appendix 9. Warp time series using speed profile

As discussed in Appendix 8, the speed profile ϕ is an one-dimensional version of a warping path

matrix P:

ϕ = {P[diag(I1×nrow(P)P)–1]}Incol(P)×1

It is used in the DSC algorithm to simplify the double-sliding window approach and can also be

used to warp time series.

Given a speed profile ϕ, we can warp the corresponding time series y through the following

transformation:

yw = y(ϕ) = Hy

where H is a transformation matrix determined by the speed profile ϕ. The process for obtaining H

from ϕ is shown in Algorithm A2.

Algorithm A2 Obtain transformation matrix H from speed profile ϕ
Input:ϕ = {ϕ1,ϕ2, . . . ,ϕN}: speed profile for y.

N: length ofϕ.
Output: H: transformation matrix used to warp y.
Process:

1: i← 1; j← 1; H ← NULL; r ← ϕ[1]; c← 1
2: while i ≤ N do
3: H[j, i] = min(r, c)
4: if r > c then
5: j = j + 1
6: r = r – c
7: c = 1
8: end if
9: if r < c then

10: i = i + 1
11: c = c – r
12: r = ϕ[i]
13: end if
14: if r == c then
15: i = i + 1
16: j = j + 1
17: c = 1
18: r = ϕ[i]
19: end if
20: end while
21: return H
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For example, a speed profile ϕ = (1.5, 1, 0.5) gives a transformation matrix H:

ϕ =
[

1.5 1 0.5
]
⇒


1 0 0

0.5 0.5 0

0 0.5 0.5

 = H

Notice that the transformation matrix is just a matrix of lag coefficients βl,t in equation 1:

H =


β0,1 = 1 β–1,1 = 0 β–2,1 = 0

β1,2 = 0.5 β0,2 = 0.5 β–1,2 = 0

β2,3 = 0 β1,3 = 0.5 β0,3 = 0.5

 .

And process Hy is equivalent to combining the lag terms into a new time series in equation A1.
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Appendix 10. Data generation in Monte Carlo study

Each dataset contains ten time series. They all follow a common Autoregressive integrated moving

average (ARIMA) process but exhibit differing speeds. To simulate these varying speeds, each time

series j is warped by a matrix Pj, which is either random or a function of the time series direction

(increasing or decreasing). More formally,

y1 = P1(z) + τ + ϵ1,

yj = Pj(z) + ϵj,

Pj = f [ψsj + (1 –ψ)λj] (A2)

λj ∼ N(sj, var(sj)),

where z denotes a 100 observation-long ARIMA(1,1,0) process.26 This process is warped by a

warping path Pj, which varies across units. The warping path Pj is a function of variable sj , which

takes on value δj (a random variable specific to the unit) if z is increasing, and δ–1
j otherwise. I.e.:

sj,t =


δj if z′t > 0

1
δj

otherwise,
δj ∼ U(a, b)

The idea behind sj is to capture the possibility that speed may vary as a function of the direction

of the underlying series. Economic crashes (i.e. a decreasing series), for example, may unfold faster

than recoveries (Reinhart and Rogoff 2014).

The other term in the warping path expression, ψ ∈ (0, 1), determines the extent to which this

occurs. For instance, ψ = 0 implies that the warping path will be entirely governed by a random

normal variable λ. In this case, the speed at each observation will randomly differ from the next,

and sj will play no role. Conversely, if ψ = 1, the speed profile will completely depend on the

direction of the time series (although the speed is still specific to each series, as the random draw δj is

unit-specific).

26. We also generated data using ARIMA (0,1,1) and ARIMA (1,1,1) models. Our findings indicate that the results across
these models are similar.
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Finally, τt denotes the value of the true treatment effect at time t. For the treated unit,

τt =


0 if t ≤ T

t–T
10 κ if t ∈ [T,T + 10)

κ if t ≥ T + 10,

where κ refers to the magnitude of the treatment effect, and T = 60 here. The chosen form of τt

represents a shock that unfolds over several periods, capturing the gradual impact often observed

in real-world scenarios. This modeling choice, not central to our approach, is simply intended

to enhance the representation of actual shocks, whose effects may take time to materialize. An

illustrative sample dataset is displayed in Figure A2.
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Figure A2. Illustration of an artificial dataset generated using the Model in equation A2. Only a subset of units is displayed
for readability. Top: Units y2–y4 are used to construct counterfactuals approximating Unit y1 during the pre-treatment
period (t < 60). The middle figure depicts synthetic controls: standard SC in blue and DSC in red. The lower figure shows
that the estimated treatment effects from DSC are more accurate in capturing the true effect compared to those from the
standard SC method.
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Appendix 11. Empirical replication with warped covariates

We replicate the placebo tests in Figure 5 with warped covariates. In each analysis, we use the same

covariates from the original applications, while these covariates are warped using the same warping

path as we used in warping the donor units. This is under the assumption that the covariates have

the same speed with the donor unit. The results are shown in Figure A3.
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Figure A3. Placebo tests, real data. We revisited the placebo tests reported in Abadie and Gardeazabal (2003), Abadie,
Diamond, and Hainmueller (2010) and Abadie, Diamond, and Hainmueller (2015). The covariates are warped. The plots
report the placebo tests for each of these studies, using standard synthetic controls (blue) and dynamic synthetic control
(red). In addition, the estimated treatment effects for the treated units—Basque Country, California State, and West
Germany—are shown as thick, brighter lines. For each study, find that our placebo estimates exhibit smaller variance than
those using standard synthetic controls, which do not account for variations in speed.
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Appendix 12. Length of warped time series

The length of the warped time series ywj often differs from the target time series y1 for two reasons:

(i) the cutoff time Cj and the treatment time T are not necessarily the same; (ii) the warping of the

post-treatment time series yj,post is not based on a direct DTW matching between yj,post and y1,post.

While ywj,pre is guaranteed to be of length T, the length of ywj,post could be shorter or longer than

y1,post depending on whether Cj is smaller than T or the warping path Pj,post accelerates the average

speed of yj,post, thus shortening the warped time series. The difference in length is normal, as the

speeds of y1 and yj can vary and we do not impose a strict end-rule that forces yj,N to match y1,N . If

ywj,post is shorter than y1,post, we lose some data points at the end of the time series but gain better

speed alignment immediately after the treatment at T. This improved alignment is beneficial for

comparative studies.

Changes in the length of the warped donor time series have significant implications for the

implementation of the DSC method. In instances where the post-treatment time series are very short,

if the DSC method yields a shorter synthetic control, there might be insufficient post-treatment data

points to deduce a solid causal inference. Take, for instance, a scenario where the post-treatment

segment consists of 12 periods. If, after applying the DSC method, the resulting synthetic control

has only 8 periods, then conducting a causal effect study over 10 periods becomes unfeasible.

To avoid this issue, we recommend the adoption of slope-constrained step patterns like symmetricP2

or asymmetricP2 (Sakoe and Chiba 1978) in DSC so that the time series are not overly warped.

Depending on the chosen step pattern, users can determine the minimum periods of the warped time

series. For instance, after warping using the symmetricP2 or asymmetricP2 step patterns, the potential

length of the warped time series lies within the [ 2
3N, 3

2N] range. This suggests that maintaining

a buffer of 1
3N can guarantee that the warped time series retains adequate periods for subsequent

analysis.
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Appendix 13. R package

For the convenience of researchers and practitioners interested in employing the methods discussed

in this paper, we have developed an accompanying R package. This package is publicly available at

github.com/conflictlab/dsc. The package includes functions to implement all described methods, and

it comes with comprehensive documentation to guide users through the installation and application

process.

To install the package, one can execute the following R command:

devtools::install_github("conflictlab/dsc")

Additional documentation and examples for using the package can be found at https://github.

com/conflictlab/dsc/blob/main/README.md.

Researchers are encouraged to refer to the package when utilizing the methods described in this

paper, and a citation format for acknowledging the package is provided in the package documenta-

tion.


