
Multiple Imputation for Large Hierarchical
Multidimensional Data with Linear

Aggregation Constraints

January 6, 2025

Abstract

The use of multiple imputation for missing data in empirical studies has become
increasingly popular in recent years. However, existing multiple imputation methods
encounter significant challenges when applied to large, hierarchical, multidimensional
datasets, especially those with linear aggregation constraints. This paper introduces
a novel multiple imputation method specifically designed to address these challenges.
Our method utilizes singular multivariate normal distributions within an Expectation
Maximization algorithm, combined with a Parallel-Sequential Imputation scheme, to
effectively handle large and complex datasets that include linear aggregation con-
straints. Testing on real datasets demonstrates that our method achieves up to twice
the accuracy and is an order of magnitude faster than leading alternative meth-
ods. We apply our method to estimate a panel data model of average weekly wages,
demonstrating that our method produces estimates that are unbiased and as efficient
as estimates based on datasets with no missing values.

Keywords: missing data, expectation maximization, singular multivariate normal distribu-
tion, quasi-Monte Carlo, QCEW
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1 Introduction

Missing data arising from subject non-response, system failures, measurement errors, con-

fidentiality constraints or other causes, poses a frequent challenge in empirical economic

studies. Because most analytical methods require complete datasets, researchers must of-

ten either remove or fill the incomplete observations, or implicitly incorporate the missing

data into their models, to facilitate meaningful analyses and inferences. Depending on the

mechanism of missing data (Rubin, 1987), appropriate missing data methods are crucial

to avoid information loss and biased analyses.

In Economic studies, the most commonly used missing data method is list-wise dele-

tion, which simply excludes incomplete observations. However, this approach causes biased

results if the data are not Missing Completely At Random (MCAR). For example, if survey

respondents within certain demographic groups are less inclined to report their consump-

tion patterns, analyses based solely on the complete cases would produce biased results.

Recently, more sophisticated methods, such as maximum likelihood estimation, weighting,

and imputation methods have been developed for scenarios where the MCAR assumption

does not hold. Imputation methods have gained increasing popularity since, after imputing

the missing values, researchers can freely apply any analytical methods of interest. Multiple

imputation (MI) methods, paricularly, have come to dominate because they can generate

accurate imputations while also capturing the additional uncertainty of the missing data.

Since the pioneering work of Rubin (1987), a wide array of multiple imputation meth-

ods has been developed, including various modeling specifications and sampling techniques

to handle different data types. These methods include parametric methods such as Joint

Modeling (JM) (Schafer, 1997; Rizopoulos, 2012) and Fully Conditional Specification (FCS)

(Azur et al., 2011; Van Buuren, 2018), as well as semi-parametric and non-parametric meth-

ods like Hot Deck (Cranmer and Gill, 2013), Predictive Mean Matching (PMM) (Rubin,

1986; Little, 1988), and machine learning-based imputation techniques (Stekhoven and

Bühlmann, 2012; Batista et al., 2002). These methods can effectively impute common data

types, including continuous, categorical, survival, longitudinal, and panel data (Van Bu-

uren, 2018; Little and Rubin, 2019). Among longitudinal or panel data studies, the most

widely used multiple imputation methods include Multivariate Imputation by Chained
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Equations (MICE) (Azur et al., 2011), the Expectation Maximization (EM) based meth-

ods (Honaker and King, 2010; King et al., 2001), and the Markov Chain Monte Carlo

(MCMC) based methods (Gelman et al., 1995; Schafer, 1997). MICE is well known for its

flexibility with mixed-type data and varying patterns of missing data. EM-based methods,

such as the EM with Bootstrapping (EMB) (Honaker and King, 2010) method, are com-

putationally efficient and effective for large datasets. MCMC-based methods have been

shown to be robust for datasets with complex relationships and distributions.

Despite these advances, existing multiple imputation methods struggle to handle large,

hierarchical datasets with linear aggregation constraints, i.e. individual values aggregated

across dimensions like time, hierarchical levels, or geographic areas. Failure to incorporate

these aggregations can lead to constraint violations in imputed data that undermine sub-

sequent analyses. Moreover, neglecting these aggregations risks losing crucial information

and potentially causing the Missing Not At Random (MNAR) problem and may signif-

icantly reduce imputation quality. Incorporating linear aggregations directly into MICE

and EM-based methods is problematic as the aggregations introduce perfect colinearity

leading to singular covariance matrices. Extensions of the MCMC-based methods can be

specialized to handle linear constraints. Specifically, the constrained Dirichlet process mix-

ture of multivariate normals (CDPMMN) multiple imputation engine (Kim et al., 2014)

uses a hit-and-run sampler to ensure the imputed values meet the linear inequality con-

straints. However, it does not support multidimensional linear aggregation constraints.

Also, the Bayesian Multiscale Multiple Imputation (BMMI) method (Holan et al., 2010)

uses singular normal distributions to model the linear aggregations into the MCMC pro-

cess. However,the MCMC process may not be suitable for large datasets because it is

computationally intensive and may converge slowly.

In this paper, we introduce a novel method, Multidimensional Bootstrapping Expec-

tation Maximization Multiple Imputation (MBEMMI) method, designed for efficient and

accurate imputation of large, hierarchical structured multidimensional data with linear

aggregation constraints. MBEMMI uses singular normal distributions to leverage extra

information from redundant linear aggregation constraints, thereby enhancing imputation

quality and ensuring compliance with these constraints. Additionally, MBEMMI employs
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an EM algorithm that has deterministic convergence and incorporates a novel Parallel Se-

quential Imputation (PSI) scheme that allows for the algorithm to parallelized across many

processors.

Tests on real data and variants demonstrate that the MBEMMI method is more accu-

rate than the leading MCMC alternative BMMI while maintaining competitive processing

speed compared with the EM-based method EMB. Specifically, MBEMMI requires about

five minutes to generate ten imputed datasets while EMB requires two minutes and BMMI

requires fifty minutes. In an application to estimate a fixed effect model of average weekly

wages, MBEMMI yielded unbiased point estimates and recovered standard errors compara-

ble to a complete data scenario, while the complete case (list-wise deletion) study obtained

biased estimates and failed to make correct inferences due to large standard errors.

The remainder of the paper is organized as follows: Section 2 discusses the hierarchical,

multidimensional data structure with aggregation constraints using a sample of the Quar-

terly Census of Employment and Wages (QCEW) data. Section 3 describes the MBEMMI

method, focusing on its approach to estimate the distribution of missing values. Section

4 adapts MBEMMI, BMMI, and EMB methods to use the Parallel Sequential Imputation

scheme for large datasets. Validation of the MBEMMI-PSI algorithm is presented in Sec-

tion 5. In Section 6 we test our method for model estimation. Finally, Section 7 concludes

the paper.

2 Data Structure

Hierarchical multidimensional data structures organize information across several dimen-

sions, each following a hierarchical order. Example are GDP data and QCEW data, avail-

able across time and geographic dimensions, with each dimension containing hierarchical

levels and higher levels are aggregations of the lower levels.

For illustration, Table 1 shows a sample of the Florida Quarterly Census of Employ-

ment and Wage (QCEW) data, as released by the Bureau of Labor Statistics (BLS). This

data sample includes five years of employment counts across three sub-industries within

the same parent industry. In addition to the quarterly counts, the sample also contains

annual aggregations (every fifth row) and industry-wide totals (column 4). To protect the
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industries that are too small and vulnerable to intruders, BLS suppresses employment and

wage data for cells meeting the suppression rule.1 The suppressed values are indicated by

S in the Table.

Table 1: Hierarchical multidimensional data example. A subset of the Florida QCEW data
including suppressed values marked as S.

Series 1 Series 2 Series 3 Total
year1.q1 20 414 484 918
year1.q2 24 412 493 929
year1.q3 25 404 508 937
year1.q4 23 415 527 965
year1.a 92 1,645 2,012 3,749
year2.q1 9 262 540 811
year2.q2 S S 557 839
year2.q3 S S 510 831
year2.q4 S S 528 868
year2.a S S 2,135 3,349
year3.q1 S S 676 1,200
year3.q2 21 495 684 1,200
year3.q3 20 468 665 1,152
year3.q4 S S 703 1,217
year3.a 79 1,964 2,728 4,769
year4.q1 32 476 645 1,153
year4.q2 30 473 652 1,155
year4.q3 31 484 686 1,200
year4.q4 30 553 723 1,306
year4.a 123 1,986 2,706 4,814
year5.q1 36 538 630 1,205
year5.q2 41 502 661 1,204
year5.q3 45 500 657 1,202
year5.q4 48 514 639 1,200
year5.a 170 2,054 2,587 4,811

It is challenging to impute the missing quarterly counts, as they are constrained by the

annual and industry aggregations. To accurately impute them, multiple imputation meth-

ods must incorporate the linear aggregation constraints while estimating the distribution of

missing values. Successfully doing so not only makes the imputations meet the constraints,

1The BLS does not explicitly disclose its suppression rule, although a widely accepted approximation
is the 80/3 rule: a cell number is suppressed if there are fewer than 3 establishments or if any one
establishment’s employment accounts for more than 80% of the total employment (BLS, 2017).
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but also potentially extracts additional information about the missing values from these

constraints, thereby enhancing imputation accuracy.

As highlighted in Section 1, popular multiple imputation methods like MICE (Azur

et al., 2011) and EMB (Honaker and King, 2010) struggle to accommodate the multidi-

mensional aggregations due to the issue of perfect multicolinearity in the regression models.

The BMMI method (Holan et al., 2010) is more capable of handling these aggregations;

however, the stochastic convergence of the MCMC process demands considerable expertise

to determine whether a convergence has been reached. Moreover, the MCMC process re-

quires an extensive burn-in period to ensure the integrity of the chains and large enough

interval to thin the chains and mitigate auto-correlation between consecutive imputations.

Consequently, the BMMI method is slow, especially when the dataset is large.

Due to its size, the full QCEW data presents an even greater challenge than the sample

previously discussed. Organized using the North American Industry Classification System

(NAICS) code, the Florida QCEW dataset contains quarterly employment and wage infor-

mation across up to 2,678 industries.2 As detailed in Table 2, within the 2012-2016 Florida

QCEW data, 232 out of 2,157 industries are incomplete, with an average missing rate of

59.01% in those incomplete industries.

Table 2: Summary of the 2012-2016 Florida QCEW data. Industry count, incomplete
industry count, and mean missing rate of the incomplete industries (95% CI) grouped by
NAICS code levels.

Level Industry Count Incomplete Count Incomplete Mean Missing %
2-digit 25 0 -
3-digit 94 2 80% (80%, 80%)
4-digit 316 15 48.67% (34.92%, 62.41%)
5-digit 679 56 60.54% (52.32%, 68.75%)
6-digit 1,043 159 59.18% (54.2%, 64.16%)
Total 2,157 232 59.01% (54.99%, 63.03%)

Imputing large datasets like the QCEW or nationwide consumption surveys, which of-

ten contain thousands of units, is extremely time-consuming. The most efficient strategy

is parallelization of the imputation processes. However, methods like BMMI require ei-

ther automatic convergence detection tools or long enough chains to ensure a convergence.

2The 2022 version of the NAICS code includes 2,678 industry identifiers.
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In addition, priors that meet certain criteria must be provided for each parallel process to

guarantee that the imputations obtained in parallel can adequately capture the uncertainty.

Although the EMB method can be easily parallelized, it is challenging to account for linear

aggregation constraints using this method. As a result, there is currently no multiple impu-

tation method that can accurately and swiftly impute large hierarchical multidimensional

data.

3 Multidimensional Bootstrapping Expectation Max-

imization Multiple Imputation

To describe how the Multidimensional Bootstrapping Expectation Maximization Multi-

ple Imputation (MBEMMI) method works, we will progress through the following steps:

modeling the data series, incorporating linear aggregations, and detailing the multiple im-

putation process.

MBEMMI starts with the assumption that, in the absence of linear aggregations, the

data follow a multivariate normal distribution (MVN) in at least one dimension, i.e., Y ∼
N (µ,Σ). The dimension may be time as in the QCEW example shown in Table 1, or

geographic areas as in a consumption pattern survey. While the MVN assumption might

seem strong, it generally holds true for large datasets like the QCEW. Moreover, researchers

have demonstrated that an MVN assumption often performs as well as more complex

alternatives in multiple imputation practice (Schafer (1997), Schafer and Olsen (1998)).

Under the MVN assumption, MBEMMI models each variable as a linear function of all

other variables. For a missing value ymis
i,j , the model is represented as:

ymis
i,j = yobs

i,−jβ + ϵi (1)

where i denotes the observation, j denotes the variable, yobs
i,−j are observed variables in i, and

ϵi ∼ N (0, ν2) is the error term. From the linear model 1, we can estimate the distribution
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of missing value ymis
i,j ∼ N (µi,j, σ

2
i,j) as:

µ̂i,j = yobs
i,−jβ̂ (2)

σ̂i,j = ν̂. (3)

To estimate the linear models in the presence of missing values, the MBEMMI method

employs an Expectation Maximisation (EM) process, similar to Honaker and King (2010),

that iteratively estimates the linear models using the sufficient statistics, Q. This process

involves replacing missing values with current expectations until convergence is achieved.3

If linear aggregation constraints are not considered, the EM process inevitably con-

verges to a local maximum, resulting in estimates of the missing value distributions that

violate these constraints. Furthermore, the estimates are less accurate due to the neglect

of valuable information embedded within the linear constraints. To incorporate the aggre-

gations, the MBEMMI method employs singular covariance matrices within each iteration

of the EM process. This approach effectively adjusts the estimates of the missing data

distribution, ensuring their adherence to the linear constraints.

Specifically, analogous to the multiscale step in Holan et al. (2010), the MBEMMI

method segments the hierarchical multidimensional data into Basic Constraint Units (BCU).

A BCU is defined as the the smallest unit that keeps the multidimensional linear con-

straints. Considering the QCEW sample in Table 1 as an example, one BCU encompasses

the first five rows, representing all data points within year one. Any further segmentation

would disable one or more linear constraints. MBEMMI subsequently transforms these

BCUs into vectors, zi′ , where i
′ represents the year. Conditional on the current estimates

of µ̂i,j, i ∈ (4i′ − 3, 4i′), j ∈ (1, 2, 3), vector zi′ follows a multivariate normal distribution

N (µi′ ,Σi′). The covariance matrix Σi′ exhibits singularity due to redundant information

within the linear aggregations. MBEMMI then partitions the vector zi′ into observed values

zi′,o and missing values zi′,m, leading to a subsequent mean vector µi′ = (µi′,o, µi′,m), and a

3Details of the EM process are provided in Appendix A: The Expectation Maximization Process.
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covariance matrix:

Σi′ =


Σi′,oo Σi′,om

Σi′,mo Σi′,mm


 .

In each step of the EM process, the MBEMMI method leverages the Moore-Penrose inverse

Σ+
i′,oo (Searle, 1982) to adjust the estimated distribution of missing values in each step of

the EM process:4

zi′,m | zi′,o ∼ N (γi′,m,Ωi′,m)

γi′,m = µi′,m − Σi′,moΣ
+
i′,oo(zi′,o − µi′,o)

Ωi′,m = Σi′,mm − Σi′,moΣ
+
i′,ooΣi′,om.

With the converged distributions of missing values, MBEMMI can generate random

draws that satisfy the linear constraints. To comprehensively explore the uncertainty as-

sociated with missing values, rather than drawing multiple imputations from a single con-

verged distribution, MBEMMI adopts a Quasi-Monte Carlo bootstrapping method, similar

to Honaker and King (2010). This approach creates m variations of the incomplete dataset

and conducts independent EM processes to estimate m missing value distributions. MBE-

MMI then generates one imputation from each of these estimated distributions.5

This bootstrapping-initiated multiple imputation method offers several advantages:

• Enhanced speed: It outperforms maximum likelihood and IP methods in terms of

computational efficiency (Honaker and King, 2010).

• Parallelization: It naturally supports “embarrassingly parallel” execution as the

bootstrapped processes are independent.

• Deterministic convergence: The EM processes converge deterministically, elimi-

nating the need for expert supervision.

4Detailed steps for incorporating multidimensional linear aggregations are outlined in Appendix B:
Incorporating Multidimensional Linear Aggregation Constraints.

5Detailed information on the Quasi-Monte Carlo bootstrapping method is provided in Appendix C
Quasi-Monte Carlo Bootstrapping Method.
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As shown in Figure 1, the MBEMMI method consists of the following key steps:6

Step 1. Quasi-MC Bootstrapping: Bootstrap datasets (Y′
1,Y

′
2, . . . ,Y

′
m). For each

bootstrapped dataset Y′
k, apply step 2-6.

Step 2. Compute Q: Construct the initial sufficient statistics Q = (Y′
k)

T (Y′
k).

Step 3. Expectation: Estimate the distribution of missing values (µ̂, Σ̂).

Step 4. Incorporating Aggregations: Use linear aggregation constraints to correct the

distribution of missing values, (µ̂′, Σ̂′).

Step 5. Maximization: Construct new sufficient statistics Q′. If Q′ converged, continue

to step 6, otherwise repeat step 3-5.

Step 6. Imputation: Obtain converged distribution (µ̂∗, Σ̂∗), draw one imputation. In-

sert imputation in original dataset Y, obtain imputed dataset Yk.

4 Parallel Sequential Imputation Scheme

Due to the independence and automatic convergence of its multiple imputation processes,

the MBEMMI method can be efficiently scaled for large hierarchical multidimensional data

through a Parallel Sequential Imputation (PSI) blocking scheme.

Consider the 2012-2016 Florida QCEW data as an example (Table 2). Imputing 2,157

industries while simultaneously accounting for linear aggregations is not only computation-

ally demanding but also poses potential challenges related to inverting large covariance

matrices. Fortunately, the QCEW data utilizes a tree-like NAICS code structure with

five hierarchical levels, enabling its segmentation into smaller, more manageable blocks.

Each block encompasses a single coarser-resolution industry along with its immediate sub-

industries, similar to the sample in Table 1.

Since highly correlated industries are already grouped under the same coarser-resolution

industry within the NAICS code structure, and research has demonstrated that linear

6Also see Algorithm 1 in Appendix D: The MBEMMI and PSI Algorithms.
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Figure 1: The MBEMMI Method
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aggregations capture most inter-block correlations (Holan et al., 2010), we can treat these

smaller blocks as independent entities. This permits their separate imputation, significantly

enhancing data manageability.

Furthermore, Table 2 reveals that higher (coarser resolution) levels tend to exhibit fewer

incomplete industries. This is because as the level increases, vulnerable industries become

increasingly encompassed within aggregations, necessitating less suppression. This pattern

proves advantageous for imputation purposes, as information about missing values remains

embedded within higher-level aggregations, albeit in a mixed form. By imputing blocks in

a top-down, level-by-level manner, we effectively transfer information about missing values

to lower levels where it is most needed. This scheme introduces additional information into

the imputation process, leading to improved results.

The PSI scheme involves sequential imputation of QCEW data level by level, with

parallel imputation of separate blocks within each level. Upon completion, we generate a

single imputation for the entire dataset and can repeat the scheme in parallel m times to

obtain m imputations.7

MBEMMI uniquely stands as the sole multiple imputation method that fully supports

the PSI scheme. The BMMI method necessitates automatic tools for convergence detection

and the employment of certain prior rules to guarantee the quality of imputations derived

from parallel processes rather than a single Markov chain. On the other hand, the EMB

method cannot account for linear aggregations, weakening the assumption of inter-block

independence and negatively impacting imputation accuracy.

The subsequent section will compare the performance of these multiple imputation

methods using real QCEW data.

5 Validating the Algorithm

This section validates the MBEMMI method in terms of accuracy and speed, drawing

comparisons with two prominent alternatives, BMMI and EMB, using real QCEW data.

We start with a detailed examination of the QCEW sample presented in Table 1, followed by

7Detailed steps of the PSI scheme are outlined in Algorithm 2 in Appendix D: The MBEMMI and PSI
Algorithms.

12



an exploration of larger QCEW datasets using the PSI scheme. Comprehensive performance

statistics will be reported for each dataset.

5.1 Validation using a small QCEW sample

Table 3 presents the QCEW sample after imputation using the MBEMMI method. Each

missing quarterly employment count was imputedm = 10 times, resulting in the generation

of ten completed datasets. The missing annual totals for Series 1 and 2 in year 2 can be

calculated by summing the respective quarterly counts within that year. Notably, all linear

aggregation constraints hold within these completed datasets.

Table 3: MBEMMI imputed QCEW sample in Table 1. Each missing cell was imputed
m = 10 times. Only 95% confidence intervals are shown.

Series 1 Series 2 Series 3 Total
year1.q1 20 414 484 918
year1.q2 24 412 493 929
year1.q3 25 404 508 937
year1.q4 23 415 527 965
year1.a 92 1,645 2,012 3,749
year2.q1 9 262 540 811
year2.q2 (6, 24) (258, 276) 557 839
year2.q3 (11, 28) (293, 310) 510 831
year2.q4 (6, 26) (314, 334) 528 868
year2.a - - 2,135 3,349
year3.q1 (6, 17) (507, 519) 676 1,200
year3.q2 21 495 684 1,200
year3.q3 20 468 665 1,152
year3.q4 (21, 32) (482, 493) 703 1,217
year3.a 79 1,964 2,728 4,769
year4.q1 32 476 645 1,153
year4.q2 30 473 652 1,155
year4.q3 31 484 686 1,200
year4.q4 30 553 723 1,306
year4.a 123 1,986 2,706 4,814
year5.q1 36 538 630 1,205
year5.q2 41 502 661 1,204
year5.q3 45 500 657 1,202
year5.q4 48 514 639 1,200
year5.a 170 2,054 2,587 4,811

13



Due to confidentiality restrictions surrounding suppressed missing values in the QCEW

sample, direct display of imputed values or comparison with true values is not feasible.

However, 95% confidence intervals, presented in bold numbers within missing cells, offer

valuable insights. Notice the general alignment of these intervals with observed values

immediately preceding or succeeding missing values. This suggests that the imputations

successfully preserve the employment time series’ trends and that imputed values do not

exhibit substantial deviations from observed values. The width of confidence intervals

varies according to uncertainty introduced by missing values. For example, intervals in

Year 2 tend to be wider than those in Year 3 due to a greater prevalence of missing values

in Year 2, including two missing annual totals. Increased missing values equate to greater

information loss, leading to greater uncertainty during imputation.

Directly evaluating the accuracy of our method poses a challenge due to the inherent

confidentiality of suppressed data, preventing access to true values. To circumvent this

obstacle and rigorously assess the method’s effectiveness, we’ve employed a strategic ap-

proach: replacing all values in Table 3 with data from alternative industries unaffected by

suppression. By applying the same suppression patterns from Table 3 to this new data, we

create a scenario where the ”true” suppressed values are no longer confidential, enabling

explicit validation of the method.

Imputations for the new QCEW sample were generated using MBEMMI, BMMI, and

EMB, each method producing m = 10 imputations. Figure 2 displays the complete Series

1 and 2, accompanied by 95% confidence intervals of imputed values depicted as error

bars. Visually, error bars in the top figure appear smaller than those in the bottom figure,

although they are of similar magnitudes. This phenomenon stems from the constraints

imposed by industry-wise aggregations. When an imputation in Series 1 at time i, denoted

as ỹi,1, experiences an increase of s, the corresponding imputation ỹi,2 must decrease by s

to maintain the linear aggregation. This inherent property results in proportionally wider

error bars within smaller industries (like Industry 2) and narrower error bars within larger

industries (like Industry 1).

In Series 1, both MBEMMI and BMMI demonstrate high accuracy and capture the

true values within their relatively narrow error bars. Conversely, EMB exhibits larger
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Figure 2: Imputed QCEW sample in Table 1. For confidentiality reasons, the values in the
sample are replaced with disclosed data while the suppressions are unchanged.
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error bars, and three of its imputations deviate from the true values. In Series 2, the

accuracy of all three methods aligns more closely, with MBEMMI maintaining a slight edge.

MBEMMI’s error bars miss a single true value, while BMMI misses two, and EMB misses

three. The discrepancy in EMB’s performance between Series 1 and 2 can be attributed to

its underlying assumption that missing values adhere to existing trends. This assumption

holds true for Series 2 but proves less accurate for Series 1’s where there is a sharp level

shift in the midst of the cluster of missing values. Consequently, EMB performs better

in scenarios characterized by limited variability within series. Conversely, MBEMMI and

BMMI demonstrate good performance irrespective of trends, as they leverage strength from

the linear aggregation constraints.

5.2 Validation using the full Florida QCEW

We now validate the methods using the full QCEW data for Florida. As discussed in

section 4, we use PSI scheme to separate the large hierarchical multidimensional dataset

into small blocks to avoid imputing the whole dataset at once. The individual blocks are

imputed in a parallel-sequential manner that increases both the imputation speed and the

resistance to failures caused by large datasets.

Table 4 summarizes the blocks resulting from PSI. Out of 1,114 blocks, 69 have missing

values and require imputation. However, most of these blocks contain time series that have

more than 60% of their values missing. In fact, 28 of the blocks contain completely missing

series and 8 contain series missing more than 80% values. As the severely missing series

contain little information for meaningful imputations (Rubin, 1996), we focus here on the

28 blocks that have missing rates of less than 60% of the values.

We impute these 28 blocks using MBEMMI, BMMI, and EMB, with m = 10 imputa-

tions for each method and these imputations are compared to the true values. We define

the metric “τ% hit-rate” to measure the accuracy of the MI methods as the percentage of

imputed values that are within τ% of the true values:

ψp
τ =

∑
i,j∈M,k 1 |ỹp,k

i,j
−yi,j |

yi,j
≤τ%

NM ×m
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Table 4: Blocks determined by PSI from the 2012-2016 Florida QCEW data. The three
columns are (1) all possible blocks, (2) blocks with suppressed values, (3) blocks that do
not contain severely suppressed series, i.e. series have more than 60% values suppressed. A
block in the k-digit NAICS code level contains one k-digit industry and all of its (k+1)-digit
sub-industries.

Level Blocks Incomplete (0%, 60%]
2-digit 25 1 0
3-digit 94 6 3
4-digit 316 21 9
5-digit 679 41 16
Total 1,114 69 28

where p ∈ {MBEMMI,BMMI,EMB} denotes the multiple imputation method, k ∈ (1, 2, ...,m)

is the imputation indicator, and M is the collection of missing yi,j values.

The hit-rates ψp
τ , for τ = {1%, 2%, 5%, 10%} for each method on the 28 QCEW samples

are shown in Table 5. In every case, the MBEMMI method hits more targets than either

BMMI or EMB. Strikingly, 10.58% of the MBEMMI imputations are within the 1% interval

of the true values, which is more than double the hit rate of the BMMI method and more

than triple the hit rate for the EMB method. The BMMI method has higher hit-rates than

the EMB method as it can account for the linear aggregation constraints while the EMB

method cannot.

Table 5: Percentage of imputed values within 1%, 2%, 5%, 10% of the true values. The
QCEW samples are separated from the Florida QCEW dataset using the PSI scheme
discussed in Section 4. They include all individual blocks that consist of more than one
sub-industries while the suppression rates of any sub-industries do not exceed 60%.

QCEW Samples
Method <1% <2% <5% <10%
MBEMMI 10.58% 15.92% 25.38% 37.31%
BMMI 4.19% 8.04% 18.19% 29.69%
EMB 2.62% 5.62% 11.92% 20.19%

Table 6 shows the average speed of each imputation method. The EMB method uses on

average 0.02 seconds to produce one imputed QCEW sample, the MBEMMI method uses

around 0.63 seconds, and the BMMI method uses 5.39 seconds on average due to the 8,000

period burn-in which is necessary for the Markov chains to converge. The 95% confidence
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interval based on the 10 imputations is shown in parentheses.

Table 6: Average speed and 95% confidence intervals per one QCEW sample imputation.
The burn-in period for the BMMI method is set to 8,000 to ensure convergence in QCEW
samples such as in Table 1. All tests run with R version 4.2.0 on an Apple MacBook M1
Pro, with 8 cores, and 16 GB of memory.

One QCEW Sample Imputation
Method Avg. Time (95% CI)
MBEMMI 0.63sec (0.41sec, 0.85sec)
BMMI 5.39sec (4.89sec, 5.89sec)
EMB 0.02sec (0.01sec, 0.02sec)

5.3 Randomly suppressed QCEW datasets

To further explore the validity of the MBEMMI method in imputing large hierarchical

multidimensional datasets, we construct 10 randomly suppressed QCEW datasets. For

each dataset, we randomly suppress the fully-observed confidential Florida QCEW dataset,

then conduct recursive secondary suppression (Cohen and Li, 2006) to protect the initial

suppressions from being computed from the linear aggregations. The random suppression

datasets do not have severely missing series so we do not encounter any problematic series

that may break the NAICS structure. Thus, we can focus on how the MI methods work

on the entire large datasets.8

Following the PSI scheme, each randomly suppressed dataset is imputed m = 10 times

in a parallel-sequential manner. The pooled hit-rates of each MI method are shown in Table

7. We note that all methods have higher hit-rates than in the QCEW samples because the

missing rates are lower in the random suppression datasets. The MBEMMI method has

the highest hit-rates in all categories and performs especially well in the high accuracy

categories ψ1 and ψ2 where it has hit-rates about twice as high as the other methods. The

EMB method performs similar to the BMMI method because the suppressed values were

randomly selected and are less likely to be small values that deviate from the existing trend,

in which case, the EMB method works better.

8See Table 9 in Appendix E: Statistics of the Random Suppression Datasets for a summary of the
results from the random suppression simulations.
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Table 7: Percentage of imputed values within 1%, 2%, 5%, 10% of the true values. The ten
randomly suppressed Florida QCEW datasets are obtained by applying random primary
suppression and recursive secondary suppression on the true (unsuppressed) Florida QCEW
data.

Random Suppression
Method <1% <2% <5% <10%
MBEMMI 15.52% 23.12% 38.68% 53.96%
BMMI 8.31% 14.3% 27.31% 40.87%
EMB 7.56% 14.51% 31.46% 48.87%

We also report the average speeds of the MI methods in Table 8. The EMB method

uses around 0.01 seconds to impute a single block once, while the MBEMMI method takes

0.29 seconds. Both methods are much faster than the BMMI method which takes over

6 seconds. The random suppression datasets also allow us to test the speeds of the MI

methods on full datasets. To create ten imputed QCEW datasets, the EMB method takes

1.85 minutes and the MBEMMI method uses on average 4.79 minutes. The BMMI method

requires on average 51.23 minutes to compute full dataset imputations.

Table 8: Average speed and 95% confidence intervals per one random suppression block
imputation and per ten random suppression dataset imputations. The burn-in period for
BMMI method is set to 8,000 as it is necessary to ensure convergence in QCEW samples
such as in Table 1. The PSI scheme is applied to the random suppression datasets. All tests
are in R version 4.2.0 on an Apple MacBook M1 Pro, with 8 cores, and 16 GB memory.

One Block Imputation
Method Avg. Time (95% CI)
MBEMMI 0.29sec (0.27sec, 0.31sec)
BMMI 6.44sec (6.35sec, 6.54sec)
EMB 0.01sec (0.01sec, 0.01sec)

Ten Full Data Imputations
Method Avg. Time (95% CI)
MBEMMI 4.79min (3.96min, 5.61min)
BMMI 51.23min (50.16min, 52.29min)
EMB 1.85min (0.37min, 4.95min)

These tests on samples and the full size QCEW datasets demonstrate that the new

MBEMMI method can impute missing values in large hierarchical multidimensional datasets

accurately and fast.
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6 Empirical Application: Average Weekly Wage

In this section we apply the MBEMMI method to a panel data model of average weekly

wages by industry as a function of employment level and industry establishment counts

from the QCEW data along with the macroeconomic variables GDP growth rates, inflation

rates, and the unemployment rates. The model is specified as:

Wagei′,j =β1Employmenti′,j + β2Establishmenti′,j + β3GDPi′+

β4Inflationi′ + β5Unemploymenti′ + υi′ + φj + ϵi′,j (4)

where i′ denotes the year, j represents the industry, υi′ and φj are fixed time and unit

effects, and ϵi′,j is the idiosyncratic error. We assume that all classical assumptions for the

panel data model hold.

We estimate the model over the QCEW sample from Table 1 that includes data from

2012 through 2016 for three industries. Two of those industries have some suppressed

employment values and the third has complete data. Although the data released by the

BLS does have suppressions, we also have the true unsuppressed data values so that we

can test the efficiency of the MBEMMI method.

We use MBEMMI to generate m = 10 imputed QCEW samples and then estimate the

fixed effect model 4 on every imputed dataset and obtain 10 sets of estimates. Then we

pool the results using Rubin’s MI pooling rules (Rubin, 1987)9 to compute the imputation

adjusted point estimates and standard errors for the estimated parameters of the model.

We also estimate the model using the unsuppressed data as well as the list-wise deleted

data.

Figure 3 shows the point estimates and their 95% confidence intervals for all five coef-

ficients of the model. The black intervals represent the estimation using the true unsup-

pressed data, the blue intervals represent estimations where records with suppressed values

are deleted (list-wise deletion or complete case estimation), and the red intervals represent

9Following Rubin’s rules (Rubin, 1987), the pooled point estimate is obtained through β̃λ = 1
m

∑m
k=1 β̂

k
λ,

where λ indicates covariates. The pooled variance (Tλ) is a combination of the average within-imputation
variance (Ūλ) and the between-imputation variance (Bλ): Tλ = Ūλ+(1+ 1

m )Bλ, where the average within-

imputation variance is Ūλ = 1
m

∑m
k=1 U

k
λ , and the between-imputation variance is Bλ = 1

m−1

∑m
k=1(β̂

k
λ −

β̄λ)
2.
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the estimates from the MBEMMI imputed cases and the Rubin adjustments. The intervals

are fairly wide in this illustration because we are using a relatively small sample for a panel

data model.
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Figure 3: Point estimate and 95% confidence intervals. The black intervals are from un-
suppressed data with no missing values, blue intervals are complete case estimation of the
suppressed data, red intervals are from the MBEMMI imputed data.

We can learn from the Figure that none of the complete case estimates (blue) are

significantly different from zero and the bias in these estimates appears to be great compared

to the true data estimation (black). The MBEMMI results (red) are nearly identical to

the true estimates (black) and they appear to be unbiased and to correctly recover the

standard errors from the true model. Consequently, unlike the complete cases estimates, the

MBEMMI results successfully rejects the null hypothesis β = 0 for variables Establishment,

GDP, and Unemployment at 95% confidence.

This small application illustrates that MBEMMI can assist researchers in obtaining

estimates that closely resemble those derived from the true data estimates with no missing

values, and subsequently results in more accurate and reliable statistical inferences when

missing data present.
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7 Concluding Remarks

In this study, we address the difficulties in imputing data in large hierarchical multidimen-

sional datasets with linear aggregation constraints. Although such datasets are becoming

increasingly available in economcis, they pose significant challenges for existing multiple

imputation methods which either fail to take linear aggregations into account, or are not

fast enough for practical implementation in empirical research.

In this paper we introduce the Multidimensional Bootstrapping Expectation Maximiza-

tion Multiple Imputation (MBEMMI) method, which employs singular mulitvariate normal

distributions to account for the multidimensional linear constraint structure and uses an

EM algorithm along with a Parallel-Sequential Imputation (PSI) scheme to facilitate rapid

imputation of large datasets. The method is fast and capable of imputing large datasets

while achieving comparable or superior accuracy compared to existing methods.

Using real-world datasets and an empirical application, we demonstrate that the MBE-

MMI method outperforms the leading alternatives in both accuracy and speed. Measured

in terms of how closely imputed values match true but undisclosed data, MBEMMI is

about twice as accurate in imputing the Florida QCEW samples and the randomly sup-

pressed datasets than alternative methods. In addition, MBEMMI is approximately ten

times faster than the alternative multiple imputation methods able to take the linear ag-

gregations into account. An application of MBEMMI on a panel data estimation model

with suppressed data shows that the MBEMMI method helps researchers obtain unbiased

estimates and make correct inferences.

Future research will explore relaxed distributional assumptions and increased flexibility

in the types of constraints that can be handled. We plan to develop a versatile R package

to broaden MBEMMI’s usability and accessibility for researchers dealing with large and

complex datasets.
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Supplementary Material

A The Expectation Maximization Process

Expectation Step

In the expectation step, MBEMMI fills-in missing cells of the original dataset Y with

their conditional expectations, based on the current estimates of the sufficient statistics of

bootstrapped data.

The sufficient statistics are Q = (Y ′
k)

T (Y ′
k), where Y

′
k is the kth bootstrapped dataset

whose aggregation values are excluded to avoid perfect multi-collinearity, and the first

column of Y ′
k is a vector of ones. To illustrate, suppose the bootstrapped dataset Y ′

k is:

Y ′
k =




1 y4,1 S · · · S A4

1 S y7,2 · · · S A7

1 S S · · · y3,Nj
A3

1 y2,1 y2,2 · · · y2,Nj
A2

1 S y7,2 · · · S A7

1 S S · · · y3,Nj
A3

1 y5,1 y5,2 · · · y5,Nj
A5

...
...

...
. . .

...
...




where, for instance, the first subscript in y4,1 denotes that the first row of bootstrapped

dataset Y ′
k was from quarter i = 4 from the original dataset Y ′. A4 denotes the auxiliary

variables which are always observed. The sufficient statistics for data Y ′
k are computed as
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Qk = (Y ′
k)

T (Y ′
k). It is convenient to rewrite the sufficient statistics as

Q∗
k =




−1 µ̂1 µ̂2 · · · µ̂Nj
µ̂A

µ̂1 σ̂2
1 σ̂12 · · · σ̂1Nj

σ̂1A

µ̂2 σ̂12 σ̂2
2 · · · σ̂2Nj

σ̂2A
...

...
...

. . .
...

...

µ̂Nj
σ̂1Nj

σ̂2Nj
· · · σ̂2

Nj
σ̂NjA

µ̂A σ̂1A σ̂2A · · · σ̂NjA σ̂2
A




,

where, in the first EM iteration, missing values in Y ′
k are replaced with column means.

The MBEMMI algorithm executes estimations by using a SWEEP operator θ(s) (Beaton,

1964). Given an 1 × (1 + Nj + P ) input vector s that consists of only 1’s and 0’s, where

(1 + Nj + P ) is the number of columns in Q∗
k and P is the number of auxiliary variables,

a SWEEP operator θ(s) will operate on the elements of Q∗
k and obtain corresponding es-

timates. The intuition of the SWEEP operator is to transform the Q∗
k matrix and obtain

parameter estimates of all of the functions whose dependent variable is marked as 1 in s

and explanatory variables are 0 in s.

Consider a simple example that has only two variables so that Q∗ is

Q∗ =




−1 µ̂1 µ̂2

µ̂1 σ̂2
1 σ̂12

µ̂2 σ̂12 σ̂2
2


 .

The SWEEP operator with s = (0, 1, 0) will transform Q∗ to θ(s = {0, 1, 0})

θ(s = {0, 1, 0}) =




−1− (µ̂1)2

σ̂2
1

µ̂1

σ̂2
1

β̂0 = µ̂2 − σ̂12µ̂1

σ̂2
1

µ̂1

σ̂2
1

− 1
σ̂2
1

β̂1 =
σ̂12

σ̂2
1

µ̂2 − σ̂12µ̂1

σ̂2
1

σ̂12

σ̂2
1

σ̂2
2|1 = σ̂2

2 − (σ̂12)2

σ̂2
1


 .

Note that s = {0, 1, 0} means we are estimating yi,2 = β0 + β1yi,1 + ϵ. The values obtained

in the third column above are the coefficients β̂0, β̂1 and the variance σ̂2
2|1.

Using the SWEEP operators, the expectations of missing values are estimated by equa-
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tion

E(yi,j) = yobs
i θ{1−Mi}tj,

where s = (1−Mi) is the observed value indicator of quarter i, yobs
i is the 1× (1+Nj +P )

vector of observations at time i with zeros in the missing cells, and (1+Nj +P )× 1 vector

θ{1−Mi}tj denotes that we are using the jth column of swept matrix θ obtained in the tth

iteration. The transformation Q → Q∗ can be seen as a variation of a SWEEP operator

applied on s = {1, 0, 0}. Thus, there is no need to SWEEP on the first row and column

again, allowing the first element of s to always be 0. Continuing with the previous simple

example, this equation is computing E(yi,j) = β0 + β−j × yi,−j, where −j stands for other

numbers in {1, 2, 3} but not j. The variance of the missing values are obtained as

σ̂2
2|1 = θ{1−Mi}ti,j

where the subscript of θ{1−Mi}ti,j denotes the value of the ith row and jth column of swept

matrix θ.

To utilize the aggregation constraints from the original dataset Y , instead of filling

in the expectations in the missing cells of bootstrapped dataset Y ′
k , we first compute the

sufficient statistics Qk from bootstrapped dataset Y ′
k and then use the sweep operator θ

according to the locations of the suppressed values in the original dataset Y .

For each observation yi in original dataset Y ′, the filled-in row vector ŷE
i and covariance

matrix of missing values ΣE
i|yobs

i
will be

ŷE
i = yobs

i +Mi · (yobs
i θ{1−Mi}t)

ΣE
i|yobs

i
=M ′

iMi · θ{1−Mi}t

where θ{1 −Mi}t is the whole swept matrix θ obtained in the tth iteration and the “·”
denotes the inner product operator.
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Maximization Step

In the maximization step, we reconstruct the sufficient statistics as:

Q′ =
∑

i

[(ŷE
i )

T (ŷE
i ) + ΣE

i|yobs
i
],

The sufficient statistics Q′ will be used in the next E-Step to generate new expectations

and variances for missing values of the original dataset Y ′. The EM process continues until

the sufficient statistics Q converges.
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B Incorporating Multidimensional Linear Aggregation

Constraints

After the E-step the expectations of suppressed values have been estimated using QA(t)

from bootstrapped dataset Y ′
A(t), which was previously stripped of the aggregation con-

straints in the raw data file Y , and substituted back into the appropriate locations in

Y ′. The MBEMMI method then enforces the binding constraints to produce the updated

dataset, say, Ỹ ′(t). We then use the stored mapping vector to map the suppressed values

back into an updated bootstrapped dataset, Y ′
A(t+1). Since the observation-by-observation

bootstrapping will not generally select all four quarters of the same year into the sampled

data Y ′
A(i+ 1), the aggregation constraints will not bind in the bootstrapped data. In the

this step we reimpose the multidimensional linear aggregation constraints using a technique

follows the multiscale step of Holan et al. (2010) and construct a new sufficient statistics

matrix that incorporates these constraints.

The step starts by transforming quarterly data yi,j, quarterly aggregations qi and annual

aggregations ai′,j into a yearly vector

zi′ = (y4i′−3,1, ..., y4i′,1, y4i′−3,2, ..., y4i′,1, ..., y4i′−3,Nj
, ..., y4i′,Nj

,

q4i′−3, ..., q4i′ , ai′,1, ..., ai′,Nj
)′

where i′ = {1, 2, 3, ..., Ni

4
} represents the index for years.

Using year 1 as an example, the transformation places the values of the first five rows

of dataset Y into a column vector z1. z1 uses only observable aggregation values.

Define the operator matrix H:

H =




I4Nj

I4 I4 · · · I4

INj
⊗ 1′4




where In is the n×n identity matrix, 1n is a n×1 vector of ones and⊗ denotes the Kronecker

product. The dots in this operator matrix represent that there are Nj identity matrices of
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size 4×4. For z1, since the aggregation values are not complete, the corresponding operator

matrix is

H =




I4Nj

I4 I4 · · · I4

I(Nj−2)×Nj
⊗ 1′4




where I(Nj−2)×Nj
is a (Nj−2)-by-Nj matrix transformed from identity matrix INj

by deleting

the corresponding row of INj
whenever the annual total is not observed. In this example,

these are rows 4 and 5.

Given the appropriate operator matrix H, we obtain the mean vector µi′ and covariance

matrix Σ of zi′ as

µi′ = Hθi′

Σ = HVH ′,

where

θi′ = (E(y4i′−3,1), ..., E(y4i′,1), E(y4i′−3,2), ..., E(y4i′,2), ..., E(y4i′−3,Nj
), ..., E(y4i′,Nj

)),

V = diag(σ̂2E

1 , σ̂2E

1 , σ̂2E

1 , σ̂2E

1 , σ̂2E

2 , σ̂2E

2 , σ̂2E

2 , σ̂2E

2 , ..., σ̂2E

Nj
, σ̂2E

Nj
, σ̂2E

Nj
, σ̂2E

Nj
).

In θi′ , the expectations are actual values if the corresponding values are not suppressed, and

they are expectations obtained from the E-step if the corresponding values are suppressed.

It is possible to expand V to include covariances σ̂E in the off-diagonal positions but

our computations indicate that there is little gain from this so we use a diagonal V for

computational convenience.

To investigate the posterior distribution of the missing values conditional on observed

values, we partition Σ into 4 blocks:

Σ =


Σoo Σom

Σmo Σmm


 ,
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where Σoo is the covariance matrix of observed values, Σmm is the covariance matrix for

missing values and Σom = Σmo is the covariance matrix of the missing values with the

observed values. Due to the aggregation constraints, Σoo is usually singular, in which

cases, we use the Moore-Penrose inverse

Σ+
oo = P ∗(D∗)−1P ∗′ , (5)

where D∗ is a diagonal matrix with the non-zero eigenvalues of Σoo on its diagonal and P ∗

are the corresponding eigenvectors.

Using standard properties of normal distributions with singular covariance matrices

(Muirhead, 1982; Siotani et al., 1985), the posterior distribution of missing values zi′,m

conditional on observed values zi′,o is

zi′,m | zi′,o ∼ N (γi′,m,Ωm),

where the mean vector γi′,m and covariance matrix Ωm are given by

γi′,m = µi′,m + ΣmoΣ
+
oo(zi′,o − µi′,o),

Ωm = Σmm − ΣmoΣ
+
ooΣom.

At the completion of the step the posterior distributions of the missing variables based

upon a particular bootstrapped dataset and incorporating the aggregation constraints is

now available.
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C Quasi-Monte Carlo Bootstrapping Method

We use an observation-by-observation quasi-Monte Carlo bootstrapping technique in MBE-

MMI to generate unique independent multiple imputations. The Bootstrapping-based

Expectation Maximization method (EMB) developed by Honaker and King (2010) is a

generalization of the bootstrapping technique for missing data problems and is preferred

over the more complicated process of drawing µ and Σ from their posterior density used

in Imputation-Posterior (IP) methods. Given standard regularity conditions and as the

sample size grows larger, bootstrapped data will have approximately the same properties

as the original data (Efron and Tibshirani, 1994) and has lower order asymptotics than the

parametric approaches used in IP and EM with importance re-sampling (EMis) (Honaker

and King, 2010). These advantages allow us to use a bootstrapping technique to obtain

similar random draws from the posterior in a relatively shorter time.

Starting from the input data file represented in Table 1, we first eliminate the annual

total rows (ai′,j’s) and the quarterly totals (qi’s) to get a Ni ×Nj array of yi,j’s. Next, to

each row we add a vector of auxiliary variables, Ai, that will be used in the expectation

step to improve estimates of missing data. These auxiliary variables include the number

of establishments in each industry and basis functions of time created via polynomials,

LOESS, splines or wavelets. Denote this modified input dataset as Y ′. The aggregated

values are excluded from Y ′ to avoid perfect multi-colinearity in the OLS estimation of the

E-step. However, these aggregate values are essential to the incorporating aggregation step

so they are kept aside in original dataset Y along with mapping indicators to allow us map

the aggregations in Y back to the detailed values in Y ′.

The bootstrapping process randomly picks one quarterly observation at a time with re-

placement from Y ′ and stacks them into a new dataset of the same size as Y . The original

locations of the observations of the bootstrapped data are stored for use before the maxi-

mization step to map the expectations from original data Y to the bootstrapped dataset.

Each of the m bootstrapped datasets are constructed similarly using different random se-

quences and the entire bootstrapping step is completed before the EM loop depicted in

Figure 1 begins. To improve the discrepancy among the set of m bootstrapped datasets we

make use of quasi-Monte Carlo techniques introduced into bootstrapping methods (Tey-
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taud et al., 2006; Kolenikov, 2007; Aidara, 2013). Specifically, we employ a scrambled

(Matoušek, 1998) Sobol’ sequence (Sobol’, 1967) and conduct the bootstrapping following

the steps outlined by Aidara (2013).

The following steps summarize the process for constructing them bootstrapped datasets

and m sets of location indicators used in MBEMMI:

Step 1: Create m column vectors of length Ni, each denoted as xk = {x1,k, x2,k, ..., xNi,k}′,
where k = {1, 2, ...,m} is the bootstrapped dataset indicator and xi,k ∈ {0, 1, 2, ..., Ni}
is the number of times that the quarterly observation yi is selected in bootstrapped

dataset k.

Step 2: Generate m scrambled Sobol’ sequences of length Ni and arrange them into the

Ni ×m matrix φ.

Step 3: Locate φ1,1 and find inf{x1,1 : φ1,1 ≤ Prob(X1,1 ≤ x1,1)} and store the result as

x1,1, where X1,1 has a binomial distribution with size Ni and probability 1
Ni
.

Step 4: For each xi,1, where i = {2, 3, ..., Ni}, locate φi,1 and define xi,1 = inf{xi,1 : φi,1 ≤
Prob(Xi,1 ≤ xi,1)}, where Xi,1 has binomial distribution with size Ni−

∑i−1
l=1 xl,1 and

probability (1/Ni)/(1− i−1
Ni

).

Step 5: Repeat Steps 3 and 4 m− 1 times to obtain the rest of the m frequency column

vectors xk for k = {1, 2, ...,m}.

Step 6: For the kth bootstrapped dataset, select the yi quarterly observation xi,k times

and stack the selected quarterly observations into dataset Y ′
k , which has the same size

as Y ′. The rows of dataset Y ′
k are randomly permuted since the order of the quarterly

observations does not influence the expectation step. Repeat this selection process

m times to generate m bootstrapped datasets.
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D The MBEMMI and PSI Algorithms

Algorithm 1 MBEMMI

Input: Y = {Y1, Y2, ..., YNj
}: list of series, some/all of which may have missing values.

a: list of vertical aggregations of Y.
q: list of horizontal aggregations of Y.
Ni: number of observations in Y.
Nj: number of series in Y.
m: number of imputations.
tol: convergence tolerance.

Output: Y = {Y1,Y2, ...,Ym}: list of imputed Y.
Process:

1: Step 1: Bootstrap Y;

2: save m bootstrapped datasets as {Y′
1,Y

′
2, ...,Y

′
m}

3: Step 2: Impute missing values;

4: parfor Y′
k in {Y′

1,Y
′
2, ...,Y

′
m} do

5: compute sufficient statistics Q′ = (Y′
k)

T (Y′
k)

6: Q← Q′ ∗ 0
7: while ||Q′ −Q|| ≥ tol do
8: Q← Q′

9: (Expectation):

10: estimate distribution of missing values, (µ̂, Σ̂), from Q
11: insert expectations of missing values, µ̂, in original dataset Y
12: (Incorporating Aggregations):

13: compute conditional distribution ((µ̂′|a,q), (Σ̂′|a,q))
14: (Maximization):
15: insert expectations of missing values, µ̂′, in bootstrapped dataset Y′

k

16: compute sufficient statistics Q′

17: end while
18: compute converged conditional distribution ((µ̂∗|a,q), (Σ̂∗|a,q))
19: draw one imputation for each missing value
20: insert imputation in original dataset Y, obtain imputed dataset Yk

21: end parfor

22: return Y = {Y1,Y2, ...,Ym}
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Algorithm 2 PSI

Input: D = {D1,D2, ...,DL}: list of multi-level series.
Dl = {Yl,1, Yl,2, ..., Yl,Nl

}: list of series in level l, aggregations of series in Dl+1.
a = {a1, a2, ..., aL}: vertical/temporal aggregations of D.
al = {al,1, al,2, ..., al,Nl

}: vertical/temporal aggregations of Dl.
L: number of levels in multi-level data D.
Nl: number of series in level l.
m: number of imputations.

Output: D = {D1,D2, ...,Dm}: list of imputed D.
Process:

1: Step 1: Block D and a;

2: save blocks as Bl,j = {Yl,j, Yl+1,∗, al+1,∗}
3: Step 2: Impute missing values;

4: parfor k in 1 : m do
5: for l in 1 : (L− 1) do
6: parfor Bl,j in Bl = {Bl,1,Bl,2, ...,Bl,Nl

} do
7: if Yl+1,∗ do not have missing values then
8: Continue
9: else
10: if l == (L− 1) then
11: (MBEMMI) impute missing values in Yl+1,∗ once
12: else
13: (MBEMMI) estimate distributions of missing values, (µ̂, Σ̂)
14: insert expectations of missing values, µ̂, in Bl+1

15: end if
16: end if
17: end parfor
18: end for
19: for l in (L− 2) : 1 do
20: compute missing values in Dl from linear constraints
21: end for
22: save imputed dataset as Dk

23: end parfor

24: return D = {D1,D2, ...,Dm}

36



E Summary of the Random Suppression Datasets

To validate the MBEMMI method, we use ten randomly suppressed Florida QCEW datasets.

For each dataset, we first randomly suppress the quarterly employment counts in the fully-

observed Florida QCEW data provided by Florida Department of Economic Opportunity

(DEO). Then apply recursive secondary suppression (Cohen and Li, 2006) to protect the

initial suppressions from being computed from the linear aggregations. As shown in Table

9, in the ten randomly suppressed datasets, there are on average 405.8 industries have sup-

pressed values. Within those industries with suppressded values, the average suppression

rate is 28.48%.

Table 9: Summary of the ten randomly suppressed Florida QCEW data. Industry count,
incomplete industry count, and mean missing rate of the incomplete industries (95% CI)
grouped by NAICS code levels.

Level Industry Count Incomplete Count Incomplete Mean Missing %
2-digit 25 0.2 (0, 0.5) 10% (10%, 10%)
3-digit 94 3.4 (1.88, 4.92) 20.59% (17.27%, 23.91%)
4-digit 316 22.2 (19.73, 24.67) 26.15% (24.62%, 27.68%)
5-digit 679 111.3 (105.44, 117.16) 28.38% (27.6%, 29.16%)
6-digit 1043 268.7 (265.07, 272.33) 28.83% (28.33%, 29.33%)
Total 2157 405.8 (397.87, 413.73) 28.48% (28.08%, 28.89%)
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