
Journal of Computer and Communications, 2021, 9, 97-109
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2021.910006 Oct. 19, 2021 97 Journal of Computer and Communications

Reliable and Efficient Long-Term Social Media
Monitoring

Jian Cao1, Nicholas Adams-Cohen2, R. Michael Alvarez1

1Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, California, USA
2Accenture, San Jose, California, USA

Abstract
Social media data is now widely used by many academic researchers. Howev-
er, long-term social media data collection projects, which most typically in-
volve collecting data from public-use APIs, often encounter issues when rely-
ing on local area network servers (LANs) to collect high-volume streaming
social media data over long periods of time. In this paper, we present a cloud-
based data collection, pre-processing, and archiving infrastructure, and argue
that this system mitigates or resolves the problems most typically encoun-
tered when running social media data collection projects on LANs at minimal
cloud-computing costs. We show how this approach works in different cloud
computing architectures, and how to adapt the method to collect streaming
data from other social media platforms. The contribution of our research lies
in the development of methodologies that researchers can use to monitor and
analyze phenomena including how public opinion and public discourse change
in response to events, monitoring the evolution and change of misinformation
campaigns, and studying how organizations and entities change how they pre-
sent and frame information online.

Keywords
Social Media, Cloud Computing, Twitter, Time Series

1. Introduction

Social media data is now widely used in many studies in computer and social
science [1] [2]. Many of these studies collect short-term cross-sectional sam-
plings of social media data, while others take advantage of free-access or paid so-
cial media APIs and attempt to build longer-term time series that monitor discus-
sions and behavior online. For example, social scientists have been using short-

How to cite this paper: Cao, J., Adams-
Cohen, N. and Alvarez, R.M. (2021) Relia-
ble and Efficient Long-Term Social Media
Monitoring. Journal of Computer and Com-
munications, 9, 97-109.
https://doi.org/10.4236/jcc.2021.910006

Received: September 7, 2021
Accepted: October 16, 2021
Published: October 19, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2021.910006
https://www.scirp.org/
https://doi.org/10.4236/jcc.2021.910006
http://creativecommons.org/licenses/by/4.0/

J. Cao et al.

DOI: 10.4236/jcc.2021.910006 98 Journal of Computer and Communications

er-term collections of social media data to study how political and social protests
arise, for example in the case of the Arab Spring [3] [4] and Charlie Hebdo pro-
tests [5].

However, in any project that involves longer-term social media data collection
efforts, there are many potential issues with collecting a reliable and consistent
pipeline of social media data when using local area network servers (LANs). In
this paper, we begin by discussing some of the issues that we have encountered
in our own experience running a long-term Twitter data collection project (which
at this point has been ongoing since 2014). We then present a cloud-based data
collection, pre-processing, and archiving infrastructure which we argue miti-
gates or resolves many of the problems we have encountered, at minimal cloud-
computing costs. We briefly discuss how this system could be applied to other
social media platforms, and then explain specific applications of this methodol-
ogy in the context of active research projects. Finally, we discuss how this archi-
tecture could be applied and enhance other research projects.

2. Problems Collecting Streaming Social Media

If a researcher is interested in quickly collecting cross-sectional social media data
from Twitter, the use of the so-called “streaming” and “REST” APIs are relative-
ly straightforward [2] [6]. Subject to rate limits, Twitter allows researchers to get
access to a great deal of incoming Twitter data, including the content of a mes-
sage, associated metadata, and information about the user account. In our ap-
plication, where we study online conversations concerning political and social
topics, collecting data from the Twitter Streaming API by keyword or hashtag data
filtering over a brief window of time is relatively straightforward, and is a me-
thodology that many scholars use in their research [7] [8] [9] [10] [11].

This situation becomes more complicated if the research project involves long-
er-term monitoring of conversations and discussions on Twitter. For example,
one of our ongoing projects involves monitoring Twitter mentions of voter is-
sues during elections, requiring us to collect data continuously in the weeks be-
fore, during, and after an election. Ever since beginning this project in 2014, we
have worked to refine and improve our methodology for collecting these data
[12] [13]. Our process focuses on searching for specific keywords that are asso-
ciated with topics including election fraud, voting by mail, and registering to
vote. In another example of long-term social media monitoring, we are develop-
ing methods for collecting Twitter conversations using dynamic keyword selec-
tion in situations where the discussion might be rapidly evolving over long pe-
riods of time [14].

In attempting to build long-term, multi-year, social media data collection
projects on local machines, several prominent problems emerge. Our early work
used Python scripts running on local university servers, connected to local-area
networks. We found these scripts often encountered problems accessing the
Twitter APIs, had trouble with network access, or competed with other processes

https://doi.org/10.4236/jcc.2021.910006

J. Cao et al.

DOI: 10.4236/jcc.2021.910006 99 Journal of Computer and Communications

running on the servers. In certain use cases, a good programmer is able to write
test scripts to identify some of these issues, and pause collection to revise code
[12].

However, even great programmers will have trouble resolving systems fail-
ures. An ideal social media monitor should maximize the amount of data ga-
thered while minimizing the influence of any interruptions. Although a robust
script that integrates diagnostic tools can help sustain the program, without solv-
ing the underlying system failures and limitations the threat of substantial data
loss remains.

First, relying on local hardware introduces difficult, and in some cases im-
possible-to-anticipate, system failures. Power outages can knock systems offline,
and without a secondary local system in place, data in a time series will be per-
manently lost. Network instability can also undermine data collection efforts,
especially during peak-use hours or if network infrastructure is temporarily down
for maintenance. Furthermore, if there is permanent system damage to a local
system, it can be difficult, if not impossible, to recover data.

Second, the kinds of local systems most researchers have access to are not de-
signed for the specific needs of collecting real-time streaming data. Collecting
these data requires a system that can quickly and effectively obtain, buffer, process,
and store large continuous streams of incoming information. Collecting this type
of high-frequency, continuously streaming data involves specific computational
considerations, with specialized algorithms designed to best capture these data
[15]. Without a good system designed for these tasks, processing and saving files
can temporarily interrupt the Twitter stream and limit the amount of data ga-
thered. Slow processing that doesn’t meet the publishing speed will also be con-
stantly disconnected from the social media streams. Given these interruptions
are most likely to occur during periods of heavy Twitter traffic, the censored Twit-
ter data may not be missing at random, with systemic omitted Twitter data from
the streaming API potentially biasing the results of a study [16].

Finally, setting up a LAN can potentially limit future collection efforts. As a
collection project naturally expands, computational power, active memory, and
storage considerations may change. However, local systems can be difficult, ex-
pensive, and time-intensive to upgrade, especially if one needs to address these
concerns repeatedly in a multi-year research effort. On the other hand, for sea-
sonal projects such as election monitoring, local systems can be less efficient as
they are difficult to downgrade or temporarily shut down to cut expenses.

3. Cloud-Based Social Media Monitoring

In this paper, we present specific solutions to data collection on three popular
cloud computing services: Google Cloud Platform (GCP), Amazon Web Services
(AWS), and Oracle Cloud. While we illustrate our solution on these three plat-
forms, the methods and processes we outline can be generally applied to other
cloud services. While we do not claim here that we are the first to develop this

https://doi.org/10.4236/jcc.2021.910006

J. Cao et al.

DOI: 10.4236/jcc.2021.910006 100 Journal of Computer and Communications

type of workflow, we want to provide details about how our long-term social me-
dia data collection solution operates for other researchers to evaluate and utilize
in their own work. Essentially, we built a process that solves or mitigates many
of the problems using LANs by moving the data collection and pre-processing
steps onto cloud-computing platforms.1

In the next sections of this paper, we first describe the general workflow of our
social media monitoring system before providing detailed guidelines on how the
process works in GCP, AWS, and Oracle Cloud.

3.1. Workflow

We developed an architecture using cloud resources to tackle the problems dis-
cussed in the previous section. This system collects as much social media data as
rate limits allow in a stable and failure-tolerant manner.

The system consists of four parts: a data producer, a data stream, a data con-
sumer, and storage. As shown in Figure 1, it starts with a producer that requests
social media data from the API and acts as a data provider to the other parts of
the system. Then the produced data are published in the data stream for tempo-
rary storage. The data stream secures every published record on a timeline ac-
cording to the timestamp. Before the records expire, a data consumer retrieves
them from the data stream and either sends them to analytics modules or to the
short-term/long-term storage solution.

We describe the workflow of Twitter monitoring step-by-step in the following
subsections and will expand the discussion to other social media platforms in the
next section.

3.2. Data Producer

The data producer runs Python scripts on the cloud compute instances and con-
nects two parts of our data pipeline: the Twitter Stream API and the cloud data
stream.

The data producer:
● Uses the TwitterAPI package to access the Twitter Stream API, google-cloud

to interact with GCP, boto3 to interact with AWS, and oci to interact with
Oracle Cloud.

● Connects to the Twitter Stream API using Twitter Developer credentials.
● Connects to the cloud data stream using credentials/tokens.
● Requests tweets from the Twitter Stream API.

Figure 1. Social media monitor workflow.

1To reduce cloud-computing data storage costs, and to make the social media data we collect more
readily accessible to our research group, we outline a process of piping the pre-processed data to
cheap, secure, and easy-to-use data storage applications (here Google Drive). Note that, budget al-
lowing, all data can be stored on a single platform.

https://doi.org/10.4236/jcc.2021.910006

J. Cao et al.

DOI: 10.4236/jcc.2021.910006 101 Journal of Computer and Communications

● Publishes streaming tweets one-by-one to the cloud data stream.
We use the Twitter Stream API to collect real-time tweets. The most com-

monly used Twitter APIs for collecting tweets are the Stream and REST APIs.
The Twitter Stream API delivers real-time tweets continuously as soon as they
are posted and prior to subsequent alterations, such as deletion or censoring by
the platform. Furthermore, as tweets are collected right after they are posted,
they do not carry information regarding the replies and quotes that occur after a
message is sent. On the contrary, the Twitter REST API allows users to search
for the tweets that were posted in the past 7 days (30-day and full-archive end-
points are available upon upgrade). These tweets contain the latest retweet and
quote information up to the time of extraction. However, instead of delivering
all tweets that meet the filtering rules, the REST API only returns a subset of
them that are most relevant. Therefore, to collect maximal tweets, our system
focuses on the Stream API, only relying on the REST API as a backup in the case
of interruptions.

It is important to note that the rate limits of the Twitter Stream API can cause
potential data loss. The Twitter Stream API has a rate limit that only allows the
delivery of up to 50 tweets/second. Some projects such as COVID-19 have exclu-
sive unlimited endpoints. Those unlimited endpoints should be prioritized as
they have no rate limits.

Selecting a suitable cloud compute instance is also important, as it ensures
sufficient computing power at the lowest price. In our COVID-19 project, we
use two data producers to request tweets of independent topics. We found that a
Python script that produces at Twitter’s rate limit (50 tweets/second) occupies
on average 20% of a 2 GHz CPU core, and running data producers on separate
CPU cores can prevent the processes from competing with each other for re-
sources. For a two-producer project like ours, we suggest using an instance with
two CPU cores. We further recommend allocating more than 1 GB of active
memory space to compile large packages and run data consumer scripts. Table 1
shows three popular compute instances in GCP, AWS, and Oracle Cloud that

Table 1. Comparison of instance specifications.

Specs
GCP Compute
VM n2-custom

AWS EC2
EC2 t3.medium

Oracle Compute
VM.Standard.E2.2

CPU Series Intel (R) Xeon (R)
Gold 6242

Intel (R) Xeon (R)
Platinum 8175M

AMD EPYC
7551 CPU Model

Core Clock 2.80 GHz 2.50 GHz 2.00 GHz

Core Count 2 Cores 2 Cores 2 Cores

Memory 4 GB 4 GB 15 GB

Baseline Performance
(per CPU)*

100% 20% 100%

Pricing $50/Month $30/Month $61/Month

*CPU performance is restricted if average CPU usage exceeds the baseline.

https://doi.org/10.4236/jcc.2021.910006

J. Cao et al.

DOI: 10.4236/jcc.2021.910006 102 Journal of Computer and Communications

each has specifications that meet the base requirements of the two-producer
project. While the AWS system costs less than the others, AWS employs a base-
line performance mechanism2 that limits the instance’s performance once the
average CPU usage exceeds the baseline. For the t3.medium instance, perfor-
mance will be significantly reduced if the user constantly uses more than 20% of
the CPU(s). In general, the performance/price ratios are similar across platforms.
Users can always customize or resize their instances to balance the performance
and cost.

3.3. Data Stream

Cloud data streams are temporary storage services designed specifically for stream-
ing data. Their role in the data collection pipeline is like librarians – they receive,
organize, and preserve new information from the source and provide multiple
means for the users to access the collected information. Data streams are the
most essential part of the social media monitor, as they handle heavy data traffic
that is beyond most local systems’ capabilities, and make each streaming record
available to all parts of the system. Data streams improve the reliability of the
whole process by making it robust to failures caused by peaks of incoming data
and serving as buffers for the subsequent parts of the workflow to re-visit data
records if an error should occur.

While the data stream services have different names and specifications in GCP,
AWS, and Oracle Cloud, they serve the same purpose and work in the same way.
In the following discussion, we talk about the rate limits, retention periods, and
pricing methods of these stream services.

Table 2 shows the default rate limits for the stream services Pub/Sub (GCP),
Kinesis (AWS), and Oracle Stream. In the three services, Kinesis and Oracle
Stream operate on basic units (called shards in Kinesis, and partitions in Oracle
Stream), while Pub/Sub runs as a whole stream.

Table 2. Comparison of cloud data streams.*

Specs GCP Pub/Sub AWS Kinesis Oracle Stream

Unit Limits
Write

None

1 MB/s
1000 Records/s

1 MB/s
Unlimited Writes

Read
2 MB/s

5 Reads/s
2 MB/s

5 Reads/s

Project Limits

Write
50 MB/s (small**)
200 MB/s (large)

Unit Limit × N Unit Limit × N

Read
100 MB/s (small)
400 MB/s (large)

Unit Limit × N Unit Limit × N

Retention Period 7 Days 24 Hours 24 Hours

Pricing
Message Ingestion,

Delivery, and Storage
Shards × Hour Partitions × Hour

*Default rate limits can be increased upon upgrade. **Large regions: europe-west1, us-central1, us-east1.
Small regions: other regions.

2https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-credits-baseline-concepts.html

https://doi.org/10.4236/jcc.2021.910006
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-credits-baseline-concepts.html

J. Cao et al.

DOI: 10.4236/jcc.2021.910006 103 Journal of Computer and Communications

The basic units are pre-set components of a stream service. They are restricted
by default rate limits and are independent of each other. Inside these units, pub-
lished records are ordered by the timestamps of the “put” events. A shard of the
Kinesis stream supports up to 1000 records/s or 1 MB/s (whichever is met first)
for writes, and 5 requests/s or 2 MB/s for reads. For Oracle Cloud, a partition
has similar rate limits to a Kinesis shard, except it has no restrictions on the
number of write requests per second.

Users can create more units in their stream services to meet increased demand.
In AWS Kinesis, a Python script can use metrics from AWS CloudWatch to mon-
itor the usage of Kinesis shards, and scale up the number of shards if thresholds
are met. For example, to prevent the incoming tweets from hitting the writing
rate limits and causing data loss, we can use upper bounds 800 KB/s and 800
records/s as signals for immediate shard-creation. Once the average incoming
tweets exceed one of the thresholds, the Python script immediately creates a new
shard and lowers the average burden. We can also set lower bounds 500 KB/s
and 500 records/s as signals for delayed shard-deletion. Once the average records
per shard fall below the lower bounds, we want to delete one or more shards to
reduce cost. To be conservative in deleting shards, we recommend waiting at
least three hours after the lower bounds signals were triggered. The records that
were published in the deleted shards will be available until expiration. For Oracle
Cloud, it is not possible to add new partitions to existing streams, so users need
to plan ahead or manually migrate to a new stream that has more partitions if
incoming data surges.

The GCP Pub/Sub does not involve stream units explicitly. Instead of focusing
on unit limits, Pub/Sub users must pay attention to project and resource limits.
For a project that is located in large regions (europe-west1, us-central1, us-east1),
all Pub/Sub topics combined cannot exceed 200 MB/s for writes and 400 MB/s
for reads. The corresponding rate limits in other regions are 50 MB/s and 100
MB/s. The users should create separate GCP projects for large social media moni-
tors that can potentially exceed the project limits.

The retention period determines how long a record is available to be read after
being published in the stream. The default retention periods for Kinesis and
Oracle Stream are both 24 hours, and it is 7 days for Pub/Sub. Users can upgrade
to a longer retention period when creating the stream service.

There are two pricing methods, fixed pricing per unit × hour and flexible
pricing per volume of data transmission and storage. Kinesis and Oracle Stream
use the former and Pub/Sub uses the latter. The fixed pricing method leaves it to
users to optimize the size and cost of the stream, and there are inevitable re-
source losses in running the units below the rate limits and in re-sizing the
stream. On the contrary, flexible pricing only charges the resources being used.
However, we wish to emphasize that flexible pricing does not necessarily lead to
a lower overall cost.3

3Please refer to the pricing pages and the cost calculators for each cloud service to better estimate
prices.

https://doi.org/10.4236/jcc.2021.910006

J. Cao et al.

DOI: 10.4236/jcc.2021.910006 104 Journal of Computer and Communications

3.4. Data Consumer

Data consumers are cloud services or customized programs that read records
from the data streams and send them to either cloud/local databases for storage
or to analytical modules for data processing and analyses. In our social media
monitors, we use DataFlow in GCP, Firehose in AWS, and the “get_messages”
function in Oracle Cloud to extract records from the data stream. We prefer us-
ing a cloud service like DataFlow and Firehose instead of relying on customized
programs given these services tend to have lower latency and higher stability. To
add one more layer of safety, we send the extracted data immediately to cloud
databases for short-term storage and subsequently invoke BigQuery (GCP),
Lambda Functions (AWS), or Data Analytics (Oracle Cloud) for analyses.

3.5. Storage

Our social media monitoring system puts collected data temporarily in cloud
storage before archiving data in Google Drive folders. Cloud storage services,
such as Cloud Storage (GCP), S3 (AWS), Object Storage (Oracle Cloud) are nat-
ural data transfer and storage solutions between stream services and compute
instances. They are ideal for frequently used data but are not cost-efficient for
large sets of raw social media data collected over a long period of time. After the
data collection pipeline is checked and the real-time analyses are completed, we
store the data summaries and results of the analyses in a cloud MariaDB data-
base and transfer the raw data to a Google Drive folder shared with all members
of the research team. This three-layer storage structure (cloud data stream–cloud
storage-Google Drive) is robust to system failures given it inherits the stability
and compatibility from the cloud services, and, if an error should happen, the
three-layered system can easily recover data from a previous step.

4. Other Social Media Platforms

Of course, Twitter is not the only source of dynamic social media data for re-
searchers. While the Twitter API’s relative ease of use and open policy make it
one of the most popular sources of data in academic studies, many researchers
conduct research utilizing data from other popular social media platforms with
APIs, such as Reddit [17] [18], YouTube [19] [20], and Facebook [21] [22].

Our approach can be adapted to collect streaming or dynamic social media
data from these other platforms. Considering Figure 1, the main modification in
our process would be in the Producer step of the workflow. In this step, we de-
scribe setting up a virtual compute instance capable of running code designed to
interact with the Twitter API. To modify our process to collect other forms of
streaming data, we would simply rewrite this code to interact with another plat-
form’s API.

For example, suppose we wished to collect data over time from a particular
Reddit community (a subreddit). We could reuse the same process described in
the previous section, revising the set of scripts in the Producer step to access data

https://doi.org/10.4236/jcc.2021.910006

J. Cao et al.

DOI: 10.4236/jcc.2021.910006 105 Journal of Computer and Communications

from the Reddit API. There might also be some minor changes required in the
code used in the preprocessing and consumer steps, as the data stream from the
Reddit API may differ from the Twitter API. These minor alterations aside,
conceptually our approach is highly adaptable for collecting streaming and dy-
namic data from a variety of social media platforms, as long as they have a public
API or their data can easily be obtained via a script that can run on a cloud
computing instance.

5. Applications
5.1. Monitoring COVID-19 Tweets

Since January 2020, we deployed two Twitter monitors on GCP to collect tweets
related to the COVID-19 pandemic. Both monitors employ the cloud architec-
ture shown in Section 3. The first monitor (the “static” keyword monitor) was
launched on January 31st, 2021, and was retired on June 30th, 2021. It used a
VM n2-custom instance shown in Table 1 as the data producer, a PubSub stream,
and a DataFlow instance as the data consumer. While in operation, the monitor
listened to the Twitter stream endpoint “/statuses/filter” and used a static key-
word list to filter the real-time tweets. It collected around 1.86 billion tweets (8.72
TB in size) in 516 days with a peak ingestion rate of 150 tweets/second. The second
monitor (the “dynamic” monitor) was launched on June 1st, 2020, and is still ac-
tive at the time of article submission. The monitor listens to the Twitter
COVID-19 lab endpoints “labs/1/tweets/stream/covid19”, which generates tweets
that are related to a wide range of COVID-19 pandemic topics. The keyword list
is dynamic.4

It is managed by Twitter and contains more than 500 topics in multiple lan-
guages. The COVID-19 lab API has four endpoints and does not have a rate lim-
it. Therefore, we deployed an instance with 4 cores to ensure that the endpoints
do not compete CPU time. Since June 2020, the dynamic monitor collected
around 5.7 billion tweets (29.04 TB in size) with a peak ingestion rate of 250
tweets/second.

We show the daily number of tweets collected by both monitors in Figure 2.
The blue trend is the static monitor and the red one is the dynamic monitor. We
observe a quiet start in February 2020. But discussion of the pandemic skyrock-
eted in March, reached a peak in April, and gradually slowed down in May. Af-
ter the second monitor was launched in June 2020, because of the larger keyword
list, the data collected increased significantly. However, the downward-sloping
trend was not affected. Over a year since then, the daily number of tweets col-
lected by the monitors keeps declining, but very slowly. The fluctuations can be
observed every several months, which correspond to the waves of the pandemic.
At the time of article submission, the COVID-19 lab monitor collects on average
5 million tweets per day.

With the help of the social media monitoring architecture, we are able to con-
struct a comprehensive dataset of COVID-19 tweets. The extremely large volume

4https://developer.twitter.com/en/docs/labs/covid19-stream/filtering-rules

https://doi.org/10.4236/jcc.2021.910006
https://developer.twitter.com/en/docs/labs/covid19-stream/filtering-rules

J. Cao et al.

DOI: 10.4236/jcc.2021.910006 106 Journal of Computer and Communications

Figure 2. Daily tweet count of the COVID-19 monitors.

of collected information and high peak ingestion rates demonstrate how this da-
taset could only be reliably constructed and with a robust cloud architecture.
Currently, our research group is using these data to study online misinforma-
tion, toxic speech, and how politicians have framed their discussion of govern-
ment pandemic response during the COVID-19 pandemic.

5.2. Monitoring Misinformation and Rapidly Evolving Online
Conversation

Our research group also uses this infrastructure to collect near real-time social
media datasets that we use to detect misinformation and toxic speech. There are
a number of reasons why having a robust, fast, and comprehensive system for
the collection of large amounts of social media data for these scientific projects is
essential. Misinformation and toxic online speech are of course harmful to the
individuals who receive it or who it might be directed at, and as we have wit-
nessed in recent elections worldwide, deliberate misinformation campaigns might
be problematic for democratic elections. But, such speech in social media can be
difficult to detect—it is low incidence activity, and those who engage in these ac-
tivities have strong incentives to mask their behavior to avoid detection and re-
moval from social media platforms [14] [23].

We have used this architecture to collect a large dataset of Twitter data during
the 2020 presidential election, in particular a dataset of approximately 56 million
tweets on election and voter fraud. During this election, we used the data pro-
duced by this architecture to power a number of real-time visualizations of the
conversation online about many aspects of the election. These visualizations can
be seen on our Monitoring The Election website,

https://doi.org/10.4236/jcc.2021.910006

J. Cao et al.

DOI: 10.4236/jcc.2021.910006 107 Journal of Computer and Communications

https://rmichaelalvarez.github.io/twitter-monitors.html. We then use these data
for deeper forensic studies of geographic locations where there is a conversation
about election problems [13]. This provides another example of the practical and
scientific usefulness of our data collection architecture.

Also, in a recently published paper, our research group used this architecture
to collect Twitter streaming data in the aftermath of the January 6, 2021 Capital
riots, in particular, in the period leading up to and during President Biden’s In-
auguration [23]. At the time there were significant concerns that social media
might be used to organize and facilitate efforts to disrupt the Inauguration, and
our monitor was built to track an array of keywords associated with the Inaugu-
ration, but to also evolve that set of keywords as the conversation shifted be-
tween January 11, 2021, and January 22, 2021. As we show in our paper, while
there was a significant change during this period in how Twitter users discussed
the event, we did not see the evolution of significant levels of toxic conversations
[23]. This is another example of how our social media data collection architec-
ture can produce reliable and quick streams of large quantities of data, which
can then be used in practical and scientific applications.

6. Discussion

Many research groups are using social media data in their studies of political,
social, and economic attitudes and behavior. Interest is increasing in the devel-
opment of longer-term datasets that can be used to analyze changes over time in
attitudes and behavior [11]. However, in our efforts to collect longer-term social
media datasets from local servers using local area networks, we have encoun-
tered important limitations in the availability and reliability of those systems for
these purposes.

To improve the reliability of our longer-term social media data collections pro-
cess, we have developed a cloud-based infrastructure that is adaptable to several
platforms. By moving the data collection and pre-processing stages into the cloud,
we avoid many of the problems encountered when relying on local servers and
LANs. We designed our process to make data easily accessible to our research
group by moving the data to a secure and usable storage solution like Google
Drive. We have shown that these processes work across different cloud compu-
ting systems, and can be used to collect both Twitter and other streaming social
media data.

7. Conclusion

There are many opportunities for researchers who are interested in using social
media data to study the longer-term dynamics of political, social, and economic
attitudes and behavior. We hope that by providing the details of our framework,
other researchers can evaluate and potentially use this report as initial guidance
in adopting a cloud-based process, improving their ability to collect similar da-
tasets.

https://doi.org/10.4236/jcc.2021.910006
https://rmichaelalvarez.github.io/twitter-monitors.html

J. Cao et al.

DOI: 10.4236/jcc.2021.910006 108 Journal of Computer and Communications

Acknowledgements

We thank the John Randolph Haynes and Dora Haynes Foundation for sup-
porting some of this research. We also thank the Google Cloud Research Credits
Program for providing cloud computing credits to support our research on CO-
VID-19. We thank Anima Anandkumar and Anqi Liu for their collaboration
and support of our research. The collected tweets and summary statistics are
available upon request from the corresponding author (jccit@caltech.edu). Py-
thon scripts that are used to build the Twitter monitors are available in the Gi-
thub repo https://github.com/jian-frank-cao/MonitoringTwitter.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Klasnja, M., Barbara, P., Beauchamp, N., Nagler, J. and Tucker, J. (2018) Measuring

Public Opinion with Social Media Data. In: Atkeson, L.R. and Alvarez, R.M., Eds.,
The Oxford Handbook of Polling and Survey Methods, Oxford University Press,
Oxford, 555-582. https://doi.org/10.1093/oxfordhb/9780190213299.013.3

[2] Steinert-Threlkeld, Z. (2018) Twitter as Data. Cambridge University Press, New York.
https://doi.org/10.1017/9781108529327

[3] Barberá, P., Wang, N., Bonneau, R., Jost, J.T., Nagler, J., Tucker, J. and González-
Bailón, S. (2015) The Critical Periphery in the Growth of Social Protests. PLoS ONE,
10, e0143611. https://doi.org/10.1371/journal.pone.0143611

[4] Steinert-Threlkeld, Z.C. (2017) Spontaneous Collective Action: Peripheral Mobili-
zation during the Arab Spring. American Political Science Review, 111, 379-403.
https://doi.org/10.1017/S0003055416000769

[5] Larson, J.M., Nagler, J., Ronen, J. and Tucker, J.A. (2019) Social Networks and Pro-
test Participation: Evidence from 130 Million Twitter Users. American Journal of Po-
litical Science, 63, 690-705. https://doi.org/10.1111/ajps.12436

[6] Russell, M.A. (2014) Mining the Social Web: Analyzing Data from Facebook, Twit-
ter, LinkedIn, and Other Social Media Sites. Second Edition, O’Reilly Media, Inc.,
Sebastopol.

[7] Proceedings of the Fourth International AAAI Conference on Weblogs and Social
Media (2010) From Tweets to Polls: Linking Text Sentiment to Public Opinion Time
Series.

[8] Flammini, A., Conover, M.D., Gonçalves, B. and Menczer, F. (2012) Partisan Asym-
metries in Online Political Activity. EPJ Data Science, 1, 1-19.
https://doi.org/10.1140/epjds6

[9] Barberá, P. and Rivero, G. (2014) Understanding the Political Representativeness of
Twitter Users. Social Science Computer Review, 33, 712-729.
https://doi.org/10.1177/0894439314558836

[10] Beauchamp, N. (2017) Predicting and Interpolating State-Level Polls Using Twitter
Textual Data. American Journal of Political Science, 61, 490-503.
https://doi.org/10.1111/ajps.12274

[11] Adams-Cohen, N. (2020) Policy Change and Public Opinion: Measuring Shifting Po-

https://doi.org/10.4236/jcc.2021.910006
https://github.com/jian-frank-cao/MonitoringTwitter
https://doi.org/10.1093/oxfordhb/9780190213299.013.3
https://doi.org/10.1017/9781108529327
https://doi.org/10.1371/journal.pone.0143611
https://doi.org/10.1017/S0003055416000769
https://doi.org/10.1111/ajps.12436
https://doi.org/10.1140/epjds6
https://doi.org/10.1177/0894439314558836
https://doi.org/10.1111/ajps.12274

J. Cao et al.

DOI: 10.4236/jcc.2021.910006 109 Journal of Computer and Communications

litical Sentiment with Social Media Data. American Politics Research, 48, 612-621.
https://doi.org/10.1177/1532673X20920263

[12] Adams-Cohen, N.J., Hao, C., Jia, C., Matschke, N. and Alvarez, R.M. (2017) Elec-
tion Monitoring Using Twitter. Technical Report Working Paper 129, Caltech/MIT
Voting Technology Project.

[13] Alvarez, R.M., Adams-Cohen, N., Kim, S.Y.S. and Li, Y. (2020) Securing American
Elections: How Data-Driven Election Monitoring Can Improve Our Democracy. Cam-
bridge University Press, Cambridge. https://doi.org/10.1017/9781108887359

[14] Liu, A., Srikanth, M., Adams-Cohen, N., Alvarez, R.M. and Anandkumar, A. (2019)
Finding Social Media Trolls: Dynamic Keyword Selection Methods for Rapidly Evolv-
ing Online Debates. AI for Social Good Workshop, NeurIPS 2019, Vancouver, 14
December 2019. https://arxiv.org/abs/1911.05332

[15] Babcock, B., Babu, S., Datar, M., Motwani, R. and Widom, J. (2002) Models and Is-
sues in Data Stream Systems. SIGMOD/PODS02: International Conference on Man-
agement of Data and Symposium on Principles Database and Systems, Madison, 3-6
June 2002, 1-16. https://doi.org/10.1145/543613.543615

[16] Morstatter, F., Pfeffer, J. and Liu, H. (2014) When Is It Biased? Assessing the Repre-
sentativeness of Twitter’s Streaming API.
https://doi.org/10.1145/2567948.2576952

[17] Tan, C., Niculae, V., Danescu-Niculescu-Mizil, C. and Lee, L. (2016) Winning Ar-
guments: Interaction Dynamics and Persuasion Strategies in Good-Faith Online Dis-
cussions. Proceedings of the 25th International Conference on World Wide Web,
Montreal, 11-15 April 2016, 613-624. https://doi.org/10.1145/2872427.2883081

[18] Nithyanand, R., Schaffner, B. and Gill, P. (2017) Online Political Discourse in the
Trump Era. Technical Report, ACM.

[19] Burgess, J. and Matamoros-Fernández, A. (2016) Mapping Sociocultural Contro-
versies across Digital Media Platforms: One Week of #gamergate on Twitter, You-
Tube, and Tumblr. Communications Research and Practice, 2, 79-96.
https://doi.org/10.1080/22041451.2016.1155338

[20] Rieder, B., Matamoros-Fernández, A. and Coromina, Ó. (2016) From Ranking Al-
gorithms to “Ranking Cultures”: Investigating the Modulation of Visibility in You-
Tube Search Results. Convergence, 24, 50-68.
https://doi.org/10.1177/1354856517736982

[21] Rieder, B., Abdulla, R., Poell, T., Woltering, R. and Zack, L. (2015) Data Critique
and Analytical Opportunities for Very Large Facebook Pages: Lessons Learned from
Exploring “We are All Khaled Said”. Big Data & Society, 2, 1-22.
https://doi.org/10.1177/2053951715614980

[22] Kalsnes, B. (2016) The Social Media Paradox Explained: Comparing Political Par-
ties’ Facebook Strategy versus Practice. Social Media + Society, 2, 1-11.
https://doi.org/10.1177/2056305116644616

[23] Srikanth, M., Liu, A., Adams-Cohen, N., Cao, J., Alvarez, R.M. and Anandkumar, A.
(2021) Dynamic Social Media Monitoring for Fast-Evolving Online Discussions.
KDD’21: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discov-
ery & Data Mining, Singapore, 14-18 August 2021, 3576-3584.
https://doi.org/10.1145/3447548.3467171

https://doi.org/10.4236/jcc.2021.910006
https://doi.org/10.1177/1532673X20920263
https://doi.org/10.1017/9781108887359
https://arxiv.org/abs/1911.05332
https://doi.org/10.1145/543613.543615
https://doi.org/10.1145/2567948.2576952
https://doi.org/10.1145/2872427.2883081
https://doi.org/10.1080/22041451.2016.1155338
https://doi.org/10.1177/1354856517736982
https://doi.org/10.1177/2053951715614980
https://doi.org/10.1177/2056305116644616
https://doi.org/10.1145/3447548.3467171

	Reliable and Efficient Long-Term Social Media Monitoring
	Abstract
	Keywords
	1. Introduction
	2. Problems Collecting Streaming Social Media
	3. Cloud-Based Social Media Monitoring
	3.1. Workflow
	3.2. Data Producer
	3.3. Data Stream
	3.4. Data Consumer
	3.5. Storage

	4. Other Social Media Platforms
	5. Applications
	5.1. Monitoring COVID-19 Tweets
	5.2. Monitoring Misinformation and Rapidly Evolving Online Conversation

	6. Discussion
	7. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

