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Abstract 
Social media data is now widely used by many academic researchers. Howev-
er, long-term social media data collection projects, which most typically in-
volve collecting data from public-use APIs, often encounter issues when rely-
ing on local area network servers (LANs) to collect high-volume streaming 
social media data over long periods of time. In this paper, we present a cloud- 
based data collection, pre-processing, and archiving infrastructure, and argue 
that this system mitigates or resolves the problems most typically encoun-
tered when running social media data collection projects on LANs at minimal 
cloud-computing costs. We show how this approach works in different cloud 
computing architectures, and how to adapt the method to collect streaming 
data from other social media platforms. The contribution of our research lies 
in the development of methodologies that researchers can use to monitor and 
analyze phenomena including how public opinion and public discourse change 
in response to events, monitoring the evolution and change of misinformation 
campaigns, and studying how organizations and entities change how they pre- 
sent and frame information online. 
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1. Introduction 

Social media data is now widely used in many studies in computer and social 
science [1] [2]. Many of these studies collect short-term cross-sectional sam-
plings of social media data, while others take advantage of free-access or paid so-
cial media APIs and attempt to build longer-term time series that monitor discus-
sions and behavior online. For example, social scientists have been using short-
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er-term collections of social media data to study how political and social protests 
arise, for example in the case of the Arab Spring [3] [4] and Charlie Hebdo pro-
tests [5]. 

However, in any project that involves longer-term social media data collection 
efforts, there are many potential issues with collecting a reliable and consistent 
pipeline of social media data when using local area network servers (LANs). In 
this paper, we begin by discussing some of the issues that we have encountered 
in our own experience running a long-term Twitter data collection project (which 
at this point has been ongoing since 2014). We then present a cloud-based data 
collection, pre-processing, and archiving infrastructure which we argue miti-
gates or resolves many of the problems we have encountered, at minimal cloud- 
computing costs. We briefly discuss how this system could be applied to other 
social media platforms, and then explain specific applications of this methodol-
ogy in the context of active research projects. Finally, we discuss how this archi-
tecture could be applied and enhance other research projects. 

2. Problems Collecting Streaming Social Media 

If a researcher is interested in quickly collecting cross-sectional social media data 
from Twitter, the use of the so-called “streaming” and “REST” APIs are relative-
ly straightforward [2] [6]. Subject to rate limits, Twitter allows researchers to get 
access to a great deal of incoming Twitter data, including the content of a mes-
sage, associated metadata, and information about the user account. In our ap-
plication, where we study online conversations concerning political and social 
topics, collecting data from the Twitter Streaming API by keyword or hashtag data 
filtering over a brief window of time is relatively straightforward, and is a me-
thodology that many scholars use in their research [7] [8] [9] [10] [11]. 

This situation becomes more complicated if the research project involves long-
er-term monitoring of conversations and discussions on Twitter. For example, 
one of our ongoing projects involves monitoring Twitter mentions of voter is-
sues during elections, requiring us to collect data continuously in the weeks be-
fore, during, and after an election. Ever since beginning this project in 2014, we 
have worked to refine and improve our methodology for collecting these data 
[12] [13]. Our process focuses on searching for specific keywords that are asso-
ciated with topics including election fraud, voting by mail, and registering to 
vote. In another example of long-term social media monitoring, we are develop-
ing methods for collecting Twitter conversations using dynamic keyword selec-
tion in situations where the discussion might be rapidly evolving over long pe-
riods of time [14]. 

In attempting to build long-term, multi-year, social media data collection 
projects on local machines, several prominent problems emerge. Our early work 
used Python scripts running on local university servers, connected to local-area 
networks. We found these scripts often encountered problems accessing the 
Twitter APIs, had trouble with network access, or competed with other processes 
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running on the servers. In certain use cases, a good programmer is able to write 
test scripts to identify some of these issues, and pause collection to revise code 
[12]. 

However, even great programmers will have trouble resolving systems fail-
ures. An ideal social media monitor should maximize the amount of data ga-
thered while minimizing the influence of any interruptions. Although a robust 
script that integrates diagnostic tools can help sustain the program, without solv-
ing the underlying system failures and limitations the threat of substantial data 
loss remains. 

First, relying on local hardware introduces difficult, and in some cases im-
possible-to-anticipate, system failures. Power outages can knock systems offline, 
and without a secondary local system in place, data in a time series will be per-
manently lost. Network instability can also undermine data collection efforts, 
especially during peak-use hours or if network infrastructure is temporarily down 
for maintenance. Furthermore, if there is permanent system damage to a local 
system, it can be difficult, if not impossible, to recover data. 

Second, the kinds of local systems most researchers have access to are not de-
signed for the specific needs of collecting real-time streaming data. Collecting 
these data requires a system that can quickly and effectively obtain, buffer, process, 
and store large continuous streams of incoming information. Collecting this type 
of high-frequency, continuously streaming data involves specific computational 
considerations, with specialized algorithms designed to best capture these data 
[15]. Without a good system designed for these tasks, processing and saving files 
can temporarily interrupt the Twitter stream and limit the amount of data ga-
thered. Slow processing that doesn’t meet the publishing speed will also be con-
stantly disconnected from the social media streams. Given these interruptions 
are most likely to occur during periods of heavy Twitter traffic, the censored Twit-
ter data may not be missing at random, with systemic omitted Twitter data from 
the streaming API potentially biasing the results of a study [16]. 

Finally, setting up a LAN can potentially limit future collection efforts. As a 
collection project naturally expands, computational power, active memory, and 
storage considerations may change. However, local systems can be difficult, ex-
pensive, and time-intensive to upgrade, especially if one needs to address these 
concerns repeatedly in a multi-year research effort. On the other hand, for sea-
sonal projects such as election monitoring, local systems can be less efficient as 
they are difficult to downgrade or temporarily shut down to cut expenses. 

3. Cloud-Based Social Media Monitoring 

In this paper, we present specific solutions to data collection on three popular 
cloud computing services: Google Cloud Platform (GCP), Amazon Web Services 
(AWS), and Oracle Cloud. While we illustrate our solution on these three plat-
forms, the methods and processes we outline can be generally applied to other 
cloud services. While we do not claim here that we are the first to develop this 
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type of workflow, we want to provide details about how our long-term social me-
dia data collection solution operates for other researchers to evaluate and utilize 
in their own work. Essentially, we built a process that solves or mitigates many 
of the problems using LANs by moving the data collection and pre-processing 
steps onto cloud-computing platforms.1 

In the next sections of this paper, we first describe the general workflow of our 
social media monitoring system before providing detailed guidelines on how the 
process works in GCP, AWS, and Oracle Cloud. 

3.1. Workflow 

We developed an architecture using cloud resources to tackle the problems dis-
cussed in the previous section. This system collects as much social media data as 
rate limits allow in a stable and failure-tolerant manner. 

The system consists of four parts: a data producer, a data stream, a data con-
sumer, and storage. As shown in Figure 1, it starts with a producer that requests 
social media data from the API and acts as a data provider to the other parts of 
the system. Then the produced data are published in the data stream for tempo-
rary storage. The data stream secures every published record on a timeline ac-
cording to the timestamp. Before the records expire, a data consumer retrieves 
them from the data stream and either sends them to analytics modules or to the 
short-term/long-term storage solution. 

We describe the workflow of Twitter monitoring step-by-step in the following 
subsections and will expand the discussion to other social media platforms in the 
next section. 

3.2. Data Producer 

The data producer runs Python scripts on the cloud compute instances and con-
nects two parts of our data pipeline: the Twitter Stream API and the cloud data 
stream. 

The data producer: 
● Uses the TwitterAPI package to access the Twitter Stream API, google-cloud 

to interact with GCP, boto3 to interact with AWS, and oci to interact with 
Oracle Cloud. 

● Connects to the Twitter Stream API using Twitter Developer credentials. 
● Connects to the cloud data stream using credentials/tokens. 
● Requests tweets from the Twitter Stream API. 

 

 
Figure 1. Social media monitor workflow. 

 

 

1To reduce cloud-computing data storage costs, and to make the social media data we collect more 
readily accessible to our research group, we outline a process of piping the pre-processed data to 
cheap, secure, and easy-to-use data storage applications (here Google Drive). Note that, budget al-
lowing, all data can be stored on a single platform. 
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● Publishes streaming tweets one-by-one to the cloud data stream. 
We use the Twitter Stream API to collect real-time tweets. The most com-

monly used Twitter APIs for collecting tweets are the Stream and REST APIs. 
The Twitter Stream API delivers real-time tweets continuously as soon as they 
are posted and prior to subsequent alterations, such as deletion or censoring by 
the platform. Furthermore, as tweets are collected right after they are posted, 
they do not carry information regarding the replies and quotes that occur after a 
message is sent. On the contrary, the Twitter REST API allows users to search 
for the tweets that were posted in the past 7 days (30-day and full-archive end-
points are available upon upgrade). These tweets contain the latest retweet and 
quote information up to the time of extraction. However, instead of delivering 
all tweets that meet the filtering rules, the REST API only returns a subset of 
them that are most relevant. Therefore, to collect maximal tweets, our system 
focuses on the Stream API, only relying on the REST API as a backup in the case 
of interruptions. 

It is important to note that the rate limits of the Twitter Stream API can cause 
potential data loss. The Twitter Stream API has a rate limit that only allows the 
delivery of up to 50 tweets/second. Some projects such as COVID-19 have exclu-
sive unlimited endpoints. Those unlimited endpoints should be prioritized as 
they have no rate limits. 

Selecting a suitable cloud compute instance is also important, as it ensures 
sufficient computing power at the lowest price. In our COVID-19 project, we 
use two data producers to request tweets of independent topics. We found that a 
Python script that produces at Twitter’s rate limit (50 tweets/second) occupies 
on average 20% of a 2 GHz CPU core, and running data producers on separate 
CPU cores can prevent the processes from competing with each other for re-
sources. For a two-producer project like ours, we suggest using an instance with 
two CPU cores. We further recommend allocating more than 1 GB of active 
memory space to compile large packages and run data consumer scripts. Table 1 
shows three popular compute instances in GCP, AWS, and Oracle Cloud that  
 
Table 1. Comparison of instance specifications. 

Specs 
GCP Compute 
VM n2-custom 

AWS EC2 
EC2 t3.medium 

Oracle Compute 
VM.Standard.E2.2 

CPU Series Intel (R) Xeon (R) 
Gold 6242 

Intel (R) Xeon (R) 
Platinum 8175M 

AMD EPYC 
7551 CPU Model 

Core Clock 2.80 GHz 2.50 GHz 2.00 GHz 

Core Count 2 Cores 2 Cores 2 Cores 

Memory 4 GB 4 GB 15 GB 

Baseline Performance 
(per CPU)* 

100% 20% 100% 

Pricing $50/Month $30/Month $61/Month 

*CPU performance is restricted if average CPU usage exceeds the baseline. 
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each has specifications that meet the base requirements of the two-producer 
project. While the AWS system costs less than the others, AWS employs a base-
line performance mechanism2 that limits the instance’s performance once the 
average CPU usage exceeds the baseline. For the t3.medium instance, perfor-
mance will be significantly reduced if the user constantly uses more than 20% of 
the CPU(s). In general, the performance/price ratios are similar across platforms. 
Users can always customize or resize their instances to balance the performance 
and cost. 

3.3. Data Stream 

Cloud data streams are temporary storage services designed specifically for stream-
ing data. Their role in the data collection pipeline is like librarians – they receive, 
organize, and preserve new information from the source and provide multiple 
means for the users to access the collected information. Data streams are the 
most essential part of the social media monitor, as they handle heavy data traffic 
that is beyond most local systems’ capabilities, and make each streaming record 
available to all parts of the system. Data streams improve the reliability of the 
whole process by making it robust to failures caused by peaks of incoming data 
and serving as buffers for the subsequent parts of the workflow to re-visit data 
records if an error should occur. 

While the data stream services have different names and specifications in GCP, 
AWS, and Oracle Cloud, they serve the same purpose and work in the same way. 
In the following discussion, we talk about the rate limits, retention periods, and 
pricing methods of these stream services. 

Table 2 shows the default rate limits for the stream services Pub/Sub (GCP), 
Kinesis (AWS), and Oracle Stream. In the three services, Kinesis and Oracle 
Stream operate on basic units (called shards in Kinesis, and partitions in Oracle 
Stream), while Pub/Sub runs as a whole stream. 

 
Table 2. Comparison of cloud data streams.* 

Specs GCP Pub/Sub AWS Kinesis Oracle Stream 

Unit Limits 
Write 

None 

1 MB/s 
1000 Records/s 

1 MB/s 
Unlimited Writes 

Read 
2 MB/s 

5 Reads/s 
2 MB/s 

5 Reads/s 

Project Limits 

Write 
50 MB/s (small**) 
200 MB/s (large) 

Unit Limit × N Unit Limit × N 

Read 
100 MB/s (small) 
400 MB/s (large) 

Unit Limit × N Unit Limit × N 

Retention Period 7 Days 24 Hours 24 Hours 

Pricing 
Message Ingestion, 

Delivery, and Storage 
Shards × Hour Partitions × Hour 

*Default rate limits can be increased upon upgrade. **Large regions: europe-west1, us-central1, us-east1. 
Small regions: other regions. 

 

 

2https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-credits-baseline-concepts.html 
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The basic units are pre-set components of a stream service. They are restricted 
by default rate limits and are independent of each other. Inside these units, pub-
lished records are ordered by the timestamps of the “put” events. A shard of the 
Kinesis stream supports up to 1000 records/s or 1 MB/s (whichever is met first) 
for writes, and 5 requests/s or 2 MB/s for reads. For Oracle Cloud, a partition 
has similar rate limits to a Kinesis shard, except it has no restrictions on the 
number of write requests per second. 

Users can create more units in their stream services to meet increased demand. 
In AWS Kinesis, a Python script can use metrics from AWS CloudWatch to mon-
itor the usage of Kinesis shards, and scale up the number of shards if thresholds 
are met. For example, to prevent the incoming tweets from hitting the writing 
rate limits and causing data loss, we can use upper bounds 800 KB/s and 800 
records/s as signals for immediate shard-creation. Once the average incoming 
tweets exceed one of the thresholds, the Python script immediately creates a new 
shard and lowers the average burden. We can also set lower bounds 500 KB/s 
and 500 records/s as signals for delayed shard-deletion. Once the average records 
per shard fall below the lower bounds, we want to delete one or more shards to 
reduce cost. To be conservative in deleting shards, we recommend waiting at 
least three hours after the lower bounds signals were triggered. The records that 
were published in the deleted shards will be available until expiration. For Oracle 
Cloud, it is not possible to add new partitions to existing streams, so users need 
to plan ahead or manually migrate to a new stream that has more partitions if 
incoming data surges. 

The GCP Pub/Sub does not involve stream units explicitly. Instead of focusing 
on unit limits, Pub/Sub users must pay attention to project and resource limits. 
For a project that is located in large regions (europe-west1, us-central1, us-east1), 
all Pub/Sub topics combined cannot exceed 200 MB/s for writes and 400 MB/s 
for reads. The corresponding rate limits in other regions are 50 MB/s and 100 
MB/s. The users should create separate GCP projects for large social media moni-
tors that can potentially exceed the project limits. 

The retention period determines how long a record is available to be read after 
being published in the stream. The default retention periods for Kinesis and 
Oracle Stream are both 24 hours, and it is 7 days for Pub/Sub. Users can upgrade 
to a longer retention period when creating the stream service. 

There are two pricing methods, fixed pricing per unit × hour and flexible 
pricing per volume of data transmission and storage. Kinesis and Oracle Stream 
use the former and Pub/Sub uses the latter. The fixed pricing method leaves it to 
users to optimize the size and cost of the stream, and there are inevitable re-
source losses in running the units below the rate limits and in re-sizing the 
stream. On the contrary, flexible pricing only charges the resources being used. 
However, we wish to emphasize that flexible pricing does not necessarily lead to 
a lower overall cost.3 

 

 

3Please refer to the pricing pages and the cost calculators for each cloud service to better estimate 
prices. 
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3.4. Data Consumer 

Data consumers are cloud services or customized programs that read records 
from the data streams and send them to either cloud/local databases for storage 
or to analytical modules for data processing and analyses. In our social media 
monitors, we use DataFlow in GCP, Firehose in AWS, and the “get_messages” 
function in Oracle Cloud to extract records from the data stream. We prefer us-
ing a cloud service like DataFlow and Firehose instead of relying on customized 
programs given these services tend to have lower latency and higher stability. To 
add one more layer of safety, we send the extracted data immediately to cloud 
databases for short-term storage and subsequently invoke BigQuery (GCP), 
Lambda Functions (AWS), or Data Analytics (Oracle Cloud) for analyses. 

3.5. Storage 

Our social media monitoring system puts collected data temporarily in cloud 
storage before archiving data in Google Drive folders. Cloud storage services, 
such as Cloud Storage (GCP), S3 (AWS), Object Storage (Oracle Cloud) are nat-
ural data transfer and storage solutions between stream services and compute 
instances. They are ideal for frequently used data but are not cost-efficient for 
large sets of raw social media data collected over a long period of time. After the 
data collection pipeline is checked and the real-time analyses are completed, we 
store the data summaries and results of the analyses in a cloud MariaDB data-
base and transfer the raw data to a Google Drive folder shared with all members 
of the research team. This three-layer storage structure (cloud data stream–cloud 
storage-Google Drive) is robust to system failures given it inherits the stability 
and compatibility from the cloud services, and, if an error should happen, the 
three-layered system can easily recover data from a previous step. 

4. Other Social Media Platforms 

Of course, Twitter is not the only source of dynamic social media data for re-
searchers. While the Twitter API’s relative ease of use and open policy make it 
one of the most popular sources of data in academic studies, many researchers 
conduct research utilizing data from other popular social media platforms with 
APIs, such as Reddit [17] [18], YouTube [19] [20], and Facebook [21] [22]. 

Our approach can be adapted to collect streaming or dynamic social media 
data from these other platforms. Considering Figure 1, the main modification in 
our process would be in the Producer step of the workflow. In this step, we de-
scribe setting up a virtual compute instance capable of running code designed to 
interact with the Twitter API. To modify our process to collect other forms of 
streaming data, we would simply rewrite this code to interact with another plat-
form’s API. 

For example, suppose we wished to collect data over time from a particular 
Reddit community (a subreddit). We could reuse the same process described in 
the previous section, revising the set of scripts in the Producer step to access data 
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from the Reddit API. There might also be some minor changes required in the 
code used in the preprocessing and consumer steps, as the data stream from the 
Reddit API may differ from the Twitter API. These minor alterations aside, 
conceptually our approach is highly adaptable for collecting streaming and dy-
namic data from a variety of social media platforms, as long as they have a public 
API or their data can easily be obtained via a script that can run on a cloud 
computing instance. 

5. Applications 
5.1. Monitoring COVID-19 Tweets 

Since January 2020, we deployed two Twitter monitors on GCP to collect tweets 
related to the COVID-19 pandemic. Both monitors employ the cloud architec-
ture shown in Section 3. The first monitor (the “static” keyword monitor) was 
launched on January 31st, 2021, and was retired on June 30th, 2021. It used a 
VM n2-custom instance shown in Table 1 as the data producer, a PubSub stream, 
and a DataFlow instance as the data consumer. While in operation, the monitor 
listened to the Twitter stream endpoint “/statuses/filter” and used a static key-
word list to filter the real-time tweets. It collected around 1.86 billion tweets (8.72 
TB in size) in 516 days with a peak ingestion rate of 150 tweets/second. The second 
monitor (the “dynamic” monitor) was launched on June 1st, 2020, and is still ac-
tive at the time of article submission. The monitor listens to the Twitter 
COVID-19 lab endpoints “labs/1/tweets/stream/covid19”, which generates tweets 
that are related to a wide range of COVID-19 pandemic topics. The keyword list 
is dynamic.4  

It is managed by Twitter and contains more than 500 topics in multiple lan-
guages. The COVID-19 lab API has four endpoints and does not have a rate lim-
it. Therefore, we deployed an instance with 4 cores to ensure that the endpoints 
do not compete CPU time. Since June 2020, the dynamic monitor collected 
around 5.7 billion tweets (29.04 TB in size) with a peak ingestion rate of 250 
tweets/second. 

We show the daily number of tweets collected by both monitors in Figure 2. 
The blue trend is the static monitor and the red one is the dynamic monitor. We 
observe a quiet start in February 2020. But discussion of the pandemic skyrock-
eted in March, reached a peak in April, and gradually slowed down in May. Af-
ter the second monitor was launched in June 2020, because of the larger keyword 
list, the data collected increased significantly. However, the downward-sloping 
trend was not affected. Over a year since then, the daily number of tweets col-
lected by the monitors keeps declining, but very slowly. The fluctuations can be 
observed every several months, which correspond to the waves of the pandemic. 
At the time of article submission, the COVID-19 lab monitor collects on average 
5 million tweets per day. 

With the help of the social media monitoring architecture, we are able to con-
struct a comprehensive dataset of COVID-19 tweets. The extremely large volume  

 

 

4https://developer.twitter.com/en/docs/labs/covid19-stream/filtering-rules 
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Figure 2. Daily tweet count of the COVID-19 monitors. 

 
of collected information and high peak ingestion rates demonstrate how this da-
taset could only be reliably constructed and with a robust cloud architecture. 
Currently, our research group is using these data to study online misinforma-
tion, toxic speech, and how politicians have framed their discussion of govern-
ment pandemic response during the COVID-19 pandemic. 

5.2. Monitoring Misinformation and Rapidly Evolving Online  
Conversation 

Our research group also uses this infrastructure to collect near real-time social 
media datasets that we use to detect misinformation and toxic speech. There are 
a number of reasons why having a robust, fast, and comprehensive system for 
the collection of large amounts of social media data for these scientific projects is 
essential. Misinformation and toxic online speech are of course harmful to the 
individuals who receive it or who it might be directed at, and as we have wit-
nessed in recent elections worldwide, deliberate misinformation campaigns might 
be problematic for democratic elections. But, such speech in social media can be 
difficult to detect—it is low incidence activity, and those who engage in these ac-
tivities have strong incentives to mask their behavior to avoid detection and re-
moval from social media platforms [14] [23]. 

We have used this architecture to collect a large dataset of Twitter data during 
the 2020 presidential election, in particular a dataset of approximately 56 million 
tweets on election and voter fraud. During this election, we used the data pro-
duced by this architecture to power a number of real-time visualizations of the 
conversation online about many aspects of the election. These visualizations can 
be seen on our Monitoring The Election website,  
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https://rmichaelalvarez.github.io/twitter-monitors.html. We then use these data 
for deeper forensic studies of geographic locations where there is a conversation 
about election problems [13]. This provides another example of the practical and 
scientific usefulness of our data collection architecture. 

Also, in a recently published paper, our research group used this architecture 
to collect Twitter streaming data in the aftermath of the January 6, 2021 Capital 
riots, in particular, in the period leading up to and during President Biden’s In-
auguration [23]. At the time there were significant concerns that social media 
might be used to organize and facilitate efforts to disrupt the Inauguration, and 
our monitor was built to track an array of keywords associated with the Inaugu-
ration, but to also evolve that set of keywords as the conversation shifted be-
tween January 11, 2021, and January 22, 2021. As we show in our paper, while 
there was a significant change during this period in how Twitter users discussed 
the event, we did not see the evolution of significant levels of toxic conversations 
[23]. This is another example of how our social media data collection architec-
ture can produce reliable and quick streams of large quantities of data, which 
can then be used in practical and scientific applications. 

6. Discussion 

Many research groups are using social media data in their studies of political, 
social, and economic attitudes and behavior. Interest is increasing in the devel-
opment of longer-term datasets that can be used to analyze changes over time in 
attitudes and behavior [11]. However, in our efforts to collect longer-term social 
media datasets from local servers using local area networks, we have encoun-
tered important limitations in the availability and reliability of those systems for 
these purposes. 

To improve the reliability of our longer-term social media data collections pro- 
cess, we have developed a cloud-based infrastructure that is adaptable to several 
platforms. By moving the data collection and pre-processing stages into the cloud, 
we avoid many of the problems encountered when relying on local servers and 
LANs. We designed our process to make data easily accessible to our research 
group by moving the data to a secure and usable storage solution like Google 
Drive. We have shown that these processes work across different cloud compu-
ting systems, and can be used to collect both Twitter and other streaming social 
media data. 

7. Conclusion 

There are many opportunities for researchers who are interested in using social 
media data to study the longer-term dynamics of political, social, and economic 
attitudes and behavior. We hope that by providing the details of our framework, 
other researchers can evaluate and potentially use this report as initial guidance 
in adopting a cloud-based process, improving their ability to collect similar da-
tasets. 
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